
Use of A Taxonomy of Security Faults�

Taimur Aslam, Ivan Krsul, and Eugene H. Spa�ord

COAST Laboratory

Department of Computer Sciences

Purdue University

West Lafayette, IN 47907{1398

faslam,krsul,spafg@cs.purdue.edu

Technical Report TR-96-051

September 4, 1996

Abstract

Security in computer systems is important so as to
ensure reliable operation and to protect the integrity
of stored information. Faults in the implementation
of critical components can be exploited to breach se-
curity and penetrate a system. These faults must be
identi�ed, detected, and corrected to ensure reliabil-
ity and safeguard against denial of service, unautho-
rized modi�cation of data, or disclosure of informa-
tion.

We de�ne a classi�cation of security faults in the
Unix operating system. We state the criteria used
to categorize the faults and present examples of the
di�erent fault types.

We present the design and implementation details
of a prototype database to store vulnerability infor-
mation collected from di�erent sources. The data is
organized according to our fault categories. The in-
formation in the database can be applied in static
audit analysis of systems, intrusion detection, and
fault detection. We also identify and describe soft-
ware testing methods that should be e�ective in de-
tecting di�erent faults in our classi�cation scheme.

�This paper to be presented at the 19th National Informa-

tion Systems Security Conference, October 22-25, 1996, Balti-

more, Maryland.

1 Introduction

Security of computer systems is important so as to
maintain reliable operation and to protect the in-
tegrity and privacy of stored information.

In recent years we have seen the development of
sophisticated vulnerability databases and vulnerabil-
ity exploitation tools by the so-called \computer un-
derground". Some of these tools are capable of au-
tomating the exploitation of vulnerabilities that were
thought to require considerable expertise, including
IP and DNS spoo�ng. These tools are freely and
widely available, and pose a signi�cant threat that
cannot be ignored. The celebrated Kevin Mitnick
is an example of a vandal who used such tools and
databases to penetrate hundreds of computers before
being caught [17]. Although Mitnick was an expert
at exploiting VMS security holes, it is widely believed
that his knowledge of Unix was limited and that he
was provided, by a source unknown, with ready-made
tools of considerable complexity [30].

With the widespread use of computers, and in-
creased computer knowledge in the hands of people
whose objective is to obtain access to unauthorized
systems and resources, it is no longer possible or de-
sirable to implement security through obscurity [16].

To ensure that computer systems are secure against
malicious attacks we need to analyze and understand
the characteristics of faults that can subvert security
mechanisms. A classi�cation scheme can aid in the

1

understanding of faults that cause security breaches
by categorizing faults and grouping faults that share
common characteristics.

2 Related Work

Existing fault classi�cation schemes are not suitable
for data organization because they do not clearly
specify the selection criteria used. This can lead to
ambiguities and result in a fault being classi�ed in
more than one category.

The Protection Analysis (PA) Project conducted
research on protection errors in operating systems
during the mid-1970s. The group published a series
of papers, each of which described a speci�c type of
protection error and presented techniques for �nding
those errors. The proposed detection techniques were
based on pattern-directed evaluation methods, and
used formalized patterns to search for corresponding
errors [13]. The results of the study were intended
for use by personnel working in the evaluation or en-
hancement of the security of operating systems [10].

The objective of this study was to enable anyone
with little or no knowledge about computer security
to discover security errors in the system by using the
pattern-directed approach. However, these method
could not be automated easily and their database of
faults was never published. The �nal report of the
PA project proposed four representative categories of
faults. These were designed to group faults based on
their syntactic structure and are too broad to be used
for e�ective data organization.

The RISOS project was a study of computer se-
curity and privacy conducted in the mid-1970s [6].
The project was aimed at understanding security
problems in existing operating systems and to sug-
gest ways to enhance their security. The systems
whose security features were studied included IBM's
OS/MVT, UNIVAC's 1100 Series operating system,
and Bolt Beranek and Newman's TENEX system for
the PDP-10. The main contribution of the study was
a classi�cation of integrity
aws found in the operat-
ing systems studied.

The fault categories proposed in the RISOS project
are general enough to classify faults from several op-
erating systems, but the generality of the fault cate-

gories prevents �ne-grain classi�cation and can lead
to ambiguities, classifying the same fault in more
than one category.

Carl Landwehr et al. [24] published a collection of
security
aws in di�erent operating systems and clas-
si�ed each
aw according to its genesis, or the time
it was introduced into the system, or the section of
code where each
aw was introduced. The taxonomy
proposed, unfortunately, is di�cult to use for unam-
biguous classi�cation because the categories are too
generic and because it does not specify a clear classi-
�cation criteria.

Brian Marick [25] published a survey of software
fault studies from the software engineering literature.
Most of the studies reported faults that were discov-
ered in production quality software. Although the
results of the study are insightful, the classi�cation
scheme provided is not suitable for data organization
and unambiguous classi�cation.

Although classical software testing techniques are
not strictly concerned with a taxonomy of software

aws, we must pay close attention to them because
fault classi�cation schemes must classify faults de-
tected using these methods.

Boundary Condition Errors:

Boundary Value Analysis (BVA)can be used to
design test cases for functional testing of mod-
ules. BVA ensures that the test cases exercise the
boundary conditions that can expose boundary
condition errors [26]. In addition to functional
testing, mutation testing can also be used to de-
tect boundary conditions by designing appropri-
ate language dependent mutants [7, 12, 31, 14].

Domain analysis can be applied to detect bound-
ary condition errors. Domain analysis has been
studied with two variables and examined with
three variables [19, 5]. The main disadvantage
of domain testing is that it can only be applied
to a small number of variables as the di�culty
of selecting test cases becomes increasingly com-
plex. In an experiment by Howden, path analy-
sis revealed the existence of one out of three path
selection errors [18].

Input validation Errors: These errors result when
a functional module fails to properly validate the
input it accepts from another module or another
process. Failure to validate the input may cause

2

the module accepting input to fail or it may in-
directly cause another interacting module to fail.

Syntax testing can be used to verify that func-
tional modules that accept input from other pro-
cesses or modules do not fail when presented
with ill-formatted input.

Path analysis and testing can be applied to de-
tect scenarios where a certain execution path
may be chosen based on the input. In an ex-
periment conducted by Howden, path testing re-
vealed the existence of nine out of twelve com-
putation errors.

Access Validation Errors: Path analysis can be
used to detect errors that result from incorrectly
speci�ed condition constructs. Branch and Re-
lational Operator testing (BRO) is a test case
design techniques that can aid in the design of
test cases that can expose access validation er-
rors.

Failure to Handle Exceptional Condition Errors:

A security breach can be caused if a system fails
to handle an exceptional condition. This can
include unanticipated return codes, and failure
events.

Static analysis techniques such as inspection of
design documents, code walk-throughs, and for-
mal veri�cation of critical sections can be used to
ensure that a system can gracefully handle any
unanticipated event. Path analysis testing can
also be performed on small critical sections of
code to ensure that all possible execution paths
are examined. This can reveal problems that
may not have been anticipated by the designers
or overlooked because of complexity.

Environment Errors: These errors are dependent
on the operational environment, which makes
them di�cult to detect [31]. It is possible that
these vulnerabilities manifest themselves only
when the software is run on a particular ma-
chine, under a particular operating system, or
a particular con�guration.

Spa�ord [31] used mutation testing to uncover
problems with integer over
ow and under
ow.
Mutation testing can be used to design test cases
that exercise a speci�c set of inputs unique to the
run-time environment. Path analysis and testing

can also be applied to sections of the code to
ensure that all possible inputs are examined.

Synchronization Errors: These are introduced
because of the existence of a timing window be-
tween two operations or faults that result from
improper or inadequate serialization of opera-
tions. One possible sequence of actions that may
lead to a synchronization fault can be character-
ized as [22]:

1. A process acquires access to an object to
perform some operation.

2. The process's notion of the object changes
indirectly.

3. The process performs the operation on the
object.

Mutation testing can be used to detect synchro-
nization faults in a program. To detect faults
that are introduced by a timing window be-
tween two operations, a trap on executionmu-
tant can be placed between these two operations.
The mutant terminates execution of the program
if certain speci�ed conditions are not satis�ed.
For instance, a timing window between the ac-
cess permission checks and the actual logging in
xterm could be exploited to compromise secu-
rity [3]. A mutant for this vulnerability could be
designed that terminated execution thus killing
the mutant, if the access checks had been com-
pleted. This mutant could be placed between the
access checks and the logging to detect the race
condition.

Mutants can also be designed to detect improper
serialization operations. Consider a set of n
statement that must be executed sequentially to
ensure correct operation. We assume that the
statements do not contain any instructions that
break the sequential lock-step execution. We can
design (n! � 1) mutants that rearrange the order
of the n execution statements. These mutants
are killed when the mutated program produces
a di�erent result than the original program.

Con�guration Errors: These may result when
software is adapted to new environments or from
a failure to adhere to the security policy. Con�g-
uration errors consist of faults introduced after
software has been developed and are faults in-
troduced during the maintenance phase of the
software life-cycle.

3

A static audit analysis of a system can reveal a
majority of con�guration errors. Among the var-
ious software testing techniques discussed, static
analysis is the most e�ective in detecting con�g-
uration errors. The static audit of a system can
be automated by using static audit tools such as
Cops [15] and Tiger [29] that search a system
for known avenues of penetration.

3 Fault Classi�cation Scheme

From the work presented in the previous section, and
from our experience working with security faults, we
developed a taxonomy of security faults that is more
appropriate for data organization. We broadly clas-
sify faults as either coding faults or emergent faults.
Although personnel, communication, physical, and
operations security also play an essential role in the
reliable operation of computer systems, we focus on
faults that are embodied in the software.

Coding faults are comprised of faults that were in-
troduced during software development. These
faults could have been introduced because of er-
rors in programming logic, missing or incorrect
requirements, or design errors [28, 32, 27, 9, 20].

Emergent faults result from improper installation
of software, unexpected integration incompat-
ibilities, and when when a programmer fails
to completely understand the limitations of the
run-time modules. Emergent faults are essen-
tially those where the software performs exactly
according to speci�cation, but still causes a fault.
Most policy errors can be classi�ed as emergent
faults, as can be modular sofware where each
module works perfectly but the integrated prod-
uct does not.

For classi�cation purposes, we abstract each im-
plementation error to a level that will maintain the
speci�c characteristics yet hide the implementation
details. This approach is bene�cial when classifying
faults from more than one programming language.

Our taxonomy of faults is comprised of the follow-
ing categories:

Coding Faults

� Synchronization errors.

� Condition validation errors.

Emergent Faults

� Con�guration errors.

� Environment faults.

3.1 Synchronization Errors

In our taxonomy a fault classi�es as a synchronization
error if:

� A fault can be exploited because of a timing win-
dow between two operations.

� A fault results from improper serialization of op-
erations.

For example, a vulnerability was found in many
versions of the xterm program which, if exploited, al-
lowed users to create and delete arbitrary �les in the
system. If xterm operated as a setuid or setgid pro-
cess, then a race condition between the access check
permissions to the logging �le and the logging itself
allowed users to replace any arbitrary �le with the
logging �le [3]. The following code illustrates how
the vulnerability would be exploited.

create a FIFO file and name it foo

mknod foo p

start logging to foo

xterm -lf foo

rename file foo to junk

mv foo junk

create a symbolic link to password file

ln -s /etc/passwd foo

open other end of FIFO

cat junk

This error occurs because of a timing window that
exists between the time access permissions of the log-
ging �le are checked and the time actual logging is
started. This timing window could be exploited by
creating a symbolic link from the logging �le to a tar-
get �le in the system. As xterm runs setuid root, this
could be used to create new �les or destroy existing
�les in the system.

4

3.2 Condition Validation Errors

Conditions are usually speci�ed as a conditional con-
struct in the implementation language. An expres-
sion corresponding to the condition is evaluated and
an execution path is chosen based on the outcome of
the condition. In this discussion, we assume that an
operation is allowed to proceed only if the condition
evaluated to true. A condition validation error occurs
if:

� A condition is missing. This allows an opera-
tion to proceed regardless of the outcome of the
condition expression.

� A condition is incorrectly speci�ed. Execution of
the program would proceed along an alternate
path, allowing an operation to proceed regard-
less of the outcome of the condition expression,
completely invalidating the check.

� A predicate in the condition expression is miss-
ing. This would evaluate the condition incor-
rectly and allow the alternate execution path to
be chosen.

Condition errors are coding faults that occur be-
cause a programmer misunderstood the requirements
or made a logic error when the condition was speci-
�ed.

In our taxonomy, a fault classi�es as a condition
error if one of the following conditions is missing or
not speci�ed correctly:

Check for limits. Before an operation can proceed,
the system must ensure that it can allocate the
required resources without causing starvation or
deadlocks. For input/output operations, the sys-
tem must also ensure that a user/process does
not read or write beyond its address boundaries.

Check for access rights. The system must ensure
that a user/process can only access an object
in its access domain. The mechanics of this
check would di�er among di�erent systems de-
pending on how access control mechanisms are
implemented.

Check for valid input. Any routines that accept
input directly from a user or from another rou-
tine must check for the validity of input. This
includes checks for:

� Field-value correlation.

� Syntax.

� Type and number of parameters or input
�elds.

� Missing input �elds or delimiters.

� Extraneous input �elds or parameters.

Failure to properly validate input may indirectly
cause other functional modules to fail and cause
the system to behave in an unexpected manner.

Check for the origin of a subject. In this con-
text, subject refers to a user/process, host, and
shared data objects. The system must authen-
ticate the subject's identity to prevent against
identity compromise attacks.

In Unix, /etc/exports speci�es a lists of trusted
remote hosts that are allowed to mount the �le sys-
tem. In SunOS 4.1.x, if a host entry in the �le was
longer than 256 characters, or if the number of hosts
exceeded the cache capacity, a bu�er over
ow allowed
any non-trusted host to mount the �le system [4].
This allowed unauthorized users read and write access
to all �les on a system. This error occurred because
the system failed to check that it had read more than
256 characters or that it had exhausted the cache ca-
pacity.

Another example is the uux utility in Unix. This
utility allows users to remotely execute a limited set
of commands. A
aw in the parsing of the command
line allowed remote users to execute arbitrary com-
mands on the system [11]. The command line to
be executed was received by the remote system, and
parsed to see if the commands in the line were among
the set of commands that could be executed. uux read
the �rst word of the line, and skipped characters un-
til a delimiter character (;,^, |) was read. uux would
continue this way until the end of the line was read.
However, two delimiters (&, `) were missing from the
set, so a command following these characters would
never be checked before being executed. For exam-
ple, a user could execute any command by executing
the following sequence.

uux remote_machine ! rmail anything & command

In uux the command after the \&" character would
not be checked before being executed. This allowed

5

users to execute unauthorized commands on a remote
system. This error occurred because uux failed to
check for the missing delimiters.

3.3 Con�guration Errors

The con�guration of a system consists of the software
and hardware resources. In our taxonomy, a fault can
be classi�ed as a con�guration error if:

� A program/utility is installed in the wrong place.

� A program/utility is installed with incorrect
setup parameters.

� A secondary storage object or program is in-
stalled with incorrect permissions.

For example, at some sites the tftp daemon was
enabled in such a way that it allowed any user on
the Internet to access any �le on the machine run-
ning tftp. This
aw quali�es as a con�guration er-
ror in our taxonomy because tftp was not properly
installed. tftp should have been enabled such that
access to the �le system was restricted via the chroot
command [1, 2].

3.4 Environment Faults

Environment faults are introduced when speci�ca-
tions are translated to code but su�cient attention
is not paid to the run-time environment. Environ-
mental faults can also occur when di�erent modules
interact in an unanticipated manner. Independently
the modules may function according to speci�cations
but an error occurs when they are subjected to a
speci�c set of inputs in a particular con�guration en-
vironment.

For example, the exec system call overlays a new
process image over an old one. The new image is
constructed from an executable object �le or a data
�le containing commands for an interpreter. When
an interpreter �le is executed, the arguments speci�ed
in the exec call are passed to the interpreter. Most
interpreters take \-i" as an argument to start an
interactive shell.

In SunOS version 3.2 and earlier, any user could
create an interactive shell by creating a link with the
name \-i" to a setuid shell script. exec passed \-i"

as an argument to the shell interpreter that started an
interactive shell. Both the exec system call and the
shell interpreter worked according to speci�cations.
The error resulted from an interaction between the
shell interpreter and the exec call that had not been
considered.

4 Selection Criteria

For each of the classi�cations described in our taxon-
omy, it should be possible to design a decision process
that would help us classify faults automatically and
unambigously. Many such decision processes are pos-
sible and we present a selection criteria that can be
used to classify security faults into di�erent categories
to distinctly classify each fault.

For each fault category we present a series of ques-
tions that are used to determine membership in a
speci�c category. An a�rmative answer to a ques-
tion in that series quali�es the fault to be classi�ed
in the corresponding category.

4.1 Condition Validation Errors

The following sets of questions can be used to deter-
mine if a fault can be classi�ed as a condition valida-
tion error.

Boundary Condition Errors

� Did the error occur when a process at-
tempted to read or write beyond a valid
address boundary?

� Did the error occur when a system resource
was exhausted?

� Did the error result from an over
ow of a
static-sized data structure?

Access Validation Errors

� Did the error occur when a subject invoked
an operation on an object outside its access
domain?

� Did the error occur as a result of reading
or writing to/from a �le or device outside a
subject's access domain?

Origin Validation Errors

6

� Did the error result when an object ac-
cepted input from an unauthorized subject?

� Did the error result because the system
failed to properly or completely authenti-
cate a subject?

Input Validation Errors

� Did the error occur because a program
failed to recognize syntactically incorrect
input?

� Did the error result when a module ac-
cepted extraneous input �elds?

� Did the error result when a module did not
handle missing input �elds?

� Did the error result because of a �eld-value
correlation error?

Failure to Handle Exceptional Conditions

� Did the error manifest itself because the
system failed to handle an exceptional con-
dition, generated by a functional module,
device, or user input?

4.2 Synchronization Errors

This section presents the criteria that can be used to
decide if a fault can be classi�ed as a synchronization
error.

Race Condition Errors

� Is the error exploited during a timing win-
dow between two operations?

Serialization Errors

� Did the error result from inadequate or im-
proper serialization of operations?

Atomicity Errors

� Did the error occur when partially-modi�ed
data structures were observed by another
process?

� Did the error occur because the code ter-
minated with data only partially modi�ed
as part of some operation that should have
been atomic?

4.3 Environment Errors

This section presents a series of questions that be
used to decide if a fault can be classi�ed as an envi-
ronment error.

� Does the error result from an interaction in a
speci�c environment between functionally cor-
rect modules?

� Does the error occur only when a program is ex-
ecuted on a speci�c machine, under a particular
con�guration?

� Does the error occur because the operational en-
vironment is di�erent from what the software
was designed for?

4.4 Con�guration Errors

The following questions can be used to determine if
a fault can be classi�ed as a con�guration error.

� Did the error result because a system utility was
installed with incorrect setup parameters?

� Did the error occur by exploiting a system utility
that was installed in the wrong place?

� Did the error occur because access permissions
were incorrectly set on a utility such that it vio-
lated the security policy?

5 Applications of Fault Taxon-

omy

In this section, we present some applications of our
fault classi�cation scheme. In addition, we also iden-
ti�ed some testing techniques that may be used to
systematically detect those faults.

5.1 Vulnerability Database

Landwehr et al.[24] observe that the history of soft-
ware failure has been mostly undocumented and
knowing how systems have failed can help us design
better systems that are less prone to failure. The de-
sign of a vulnerability database is one step in that
direction.

7

The database could serve as a repository of vulner-
ability information collected from di�erent sources,
could be organized to allow useful queries to be per-
formed on the data, and could provide useful informa-
tion to system designers in identifying areas of weak-
nesses in the design, requirements, or implementa-
tion of software. The database could also be used to
maintain vendor patch information, vendor and re-
sponse team advisories, and catalog the patches ap-
plied in response to those advisories. This informa-
tion would be helpful to system administrators main-
taining legacy systems.

Taimur Aslam designed and built a prototype vul-
nerability database [8] to explore the usefulness of
the classi�cation scheme presented in this paper. Our
vulnerability database is based on a relational schema
model that consists of both physical and conceptual
entities. These entities are represented as relations
(tables) in the model. Relational algebra de�nes the
operations that can be performed on the the relations.
It also de�nes a set of basis functions such that any
query in the relational model can be speci�ed only
in terms of these functions. The basis functions in
the relational model are: select, project, union,
difference, and cartesian product.

The database was populated with vulnerability in-
formation from several sources and proved a useful
resource in the development of intrusion detection
patterns for the COAST intrusion detection system
IDIOT [22, 23, 21].

6 Future Work

It needs to be determined whether our classi�cation
scheme needs to be enhanced to encompass other op-
erating systems. Many modern systems are based on
a software architecture that is di�erent from that of
Unix. These include micro-kernels, object-oriented,
and distributed operating systems. If needed, our
classi�cation scheme can be easily expanded because
the criteria used for the taxonomy does not rely on
implementation details and is designed to encompass
general characteristics of a fault. Also, our existing
categories can be extended to include any news faults
that cannot be classi�ed into the existing categories,
should any be found.

The COAST vulnerability database also needs to

be extended with more vulnerabilities. The database
currently has over 80 signi�cant faults, largely from
variants of the UNIX operating system. We have
data to extend the collection to almost 150 cataloged
faults. Once this is complete, we intend to evaluate
the structure and use of the database for some of our
original research goals: building static audit tools,
guiding software design and testing, and enhancing
incident response capabilities.

7 Conclusion

In this paper we presented a fault classi�cation
scheme that helps in the unambiguous classi�cation
of security faults that is suitable for data organiza-
tion and processing. A database of vulnerabilities
using this classi�cation was implemented and is be-
ing used to aid in the production of tools that detect
and prevent computer break-ins. The classi�cation
scheme has contributed to the understanding of com-
puter security faults that cause security breaches.

8

References

[1] CERT advisory CA-91:18. Computer Emer-
gency Response Team Advisory, 1991.

[2] CERT advisory CA-91:19. Computer Emer-
gency Response Team Advisory, 1991.

[3] CERT advisory CA-93:17. Computer Emer-
gency Response Team Advisory, 1993.

[4] CERT advisory CA-94:02. Computer Emer-
gency Response Team Advisory, 1994.

[5] DeMillo R. A, Hocking E. D, and Meritt M. J.
A Comparison of Some Reliable Test Data Gen-
eration Procedures. Technical report, Georgia
Institue of Technology, 1981.

[6] R.P. Abbott et al. Security Analysis and En-
hancements of Computer Operating Systems.
Technical Report NBSIR 76-1041, Institute for
Computer Science and Technology, National Bu-
reau of Standards, 1976.

[7] H. Agrawal, R. DeMillo, R. Hathaway, and et
al. Design of Mutant Operators for the C Pro-
gramming Language. Technical Report SERC-
TR-41-P, Software Engineering Research Center,
Purdue University, 1989.

[8] Taimur Aslam. A taxonomy of security faults
in the unix operating system. Master's thesis,
Purdue University, 1995.

[9] Boris Beizer. Software Testing Techniques. Elec-
trical Engineering/Computer Science and Engi-
neering Series. Van Nostrand Reinhold, 1983.

[10] Richard Bibsey, Gerald Popek, and Jim Carl-
stead. Inconsistency of a single data value over
time. Technical report, Information Sciences
Institute,University of Southern California, De-
cember 1975.

[11] Matt Bishop. Analyzing the Security of an Ex-
isting Computer System. IEEE Fall Joint Com-
puter Conference, November 1986.

[12] T.A. Budd. Mutation Analysis of Program Test

Data. PhD thesis, Yale University, May 1980.

[13] Jim Carlstead, Richard Bibsey II, and Ger-
ald Popek. Pattern-directed protection evalu-
ation. Technical report, Information Sciences

Institue,University of Southern California, June
1975.

[14] Richard A. DeMillo and Aditya P. Mathur. On
the Use of Software Artifacts to Evaluate the
E�ectiveness of Mutation Analysis for Detecting
Errors in Production Software. Technical report,
Software Engineering Research Center, Purdue
University , SERC-TR-92-P, March 1991.

[15] Daniel Farmer and Eugene H. Spa�ord. The
COPS Security Checker System. Technical Re-
port CSD-TR-993, Software Engineering Re-
search Center, Purdue University, September
1991.

[16] Simson Gar�nkel and Eugene Spa�ord. Prac-

tical Unix and Internet Security. O'Reily and
Associates, second edition, 1996.

[17] Katie Hafner and John Marko�. Cyberpunk:

Outlaws and Hackers on the Computer Frontier.
Touchstone, 1992.

[18] W. E. Howden. Reliability of the Path Analysis
Testing Strategy. IEEE Transactions on Soft-

ware Engineering, SE-2(3):208{214, 1976.

[19] White L. J and Cohen E. K. A Domain Strategy
for Computer Program Testing. IEEE Trans-

actions on Software Engineering, 6(3):247{257,
May 1980.

[20] D.E. Knuth. The Errors of TEX. Software Prac-
tice and Experience, 19(7):607{685, 1989.

[21] Sandeep Kumar. Classi�cation and Detection of

Computer Intrusions. PhD thesis, Purdue Uni-
versity, 1995.

[22] Sandeep Kumar and Eugene Spa�ord. A Pattern
Matching Model for Misuse Intrusion Detection.
In 17th National Computer Security Conference,
1994.

[23] Sandeep Kumar and Eugene H. Spa�ord. A soft-
ware architecture to support misuse intrusion de-
tection. Technical Report CSD-TR-95-009, Pur-
due University, 1995.

[24] Carl Landwher et al. A taxonomy of computer
program security
aws. Technical report, Naval
Research Laboratory, November 1993.

9

[25] Brian Marick. A survey of software fault surveys.
Technical Report UIUCDCS-R-90-1651, Univer-
sity of Illinois at Urbana-Champaign, December
1990.

[26] G. Myers. The Art of Software Testing. Wiley,
1979.

[27] D. Potier, J.L. Albin, R. Ferrol, and A. Bilodeau.
Experiments with Computer Software Complex-
ity and Reliability. In Proceedings of the 6th In-

ternational Conference on Software Engineering,
pages 94{103. IEEE Press, 1982.

[28] Raymond J. Rubey. Quantitative Aspects of
Software Validation. SIGPLAN Notices, SE-
5(3):276{286, May 1975.

[29] David R. Sa�ord, Douglas Lee Schales, and
David K. Hess. The TAMU security package. In
Edward Dehart, editor, Proceedings of the Secu-
rity IV Conference, pages 91{118, 1993.

[30] Tsutomu Shimomura and John Marko�. Take-

down. Hyperion Books, 1996.

[31] Eugene H. Spa�ord. Extending Mutation Test-
ing to Find Environmental Bugs. Software Prac-
tice and Principle, 20(2):181{189, Feb 1990.

[32] David M. Weiss and Victor R. Basili. Evaluating
Software development by Analysis of Changes:
Some Data from the Software Engineering Lab-
oratory. IEEE Transactions on Software Engi-

neering, SE-11(2):3{11, February 1985.

10

