IDIOT - UsersGuide.

Mark Crosbie mcroshie@cs.purdue.edu
Bryn Dole dole@cs.purdue.edu
Todd Ellis élista@cs.purdue.edu
Ivan Krsul krsul @cs.purdue.edu
Eugene Spafford spaf @cs.purdue.edu

Technical Report TR-96-050

September 4, 1996

Abstract

Thismanual givesadetailed technical description of theDIOT intrusion detection system from the COAST
Laboratory at Purdue University. It isintended to help anyone who wishesto use, extend or test the IDIOT
system. Familiarity with security issues, and intrusion detection in particular, is assumed.

Chapter 1

| ntroduction

This document is the users guide for the IDIOT intrusion detection system developed at the COAST
Laboratory.

This section will remain short because a much better description of what IDIOT is, the design goals
and the model it works under can be found in the documentsincluded in the doc/ | DI OT directory in the
IDIOT distribution.

Thefilesinthat directory are:

kumar-spaf-overview.ps [KS94] Thisreport examines and classifies the characteristics of signatures used
in misuse intrusion detection. The document describes a generalized model for matching intrusion
signatures based on Colored Petri Nets. Thisis the first document you should read. We recommend
that you stop reading this guide now and return here when you have finished reading that document.

kumar-intdet-phddiss.ps [Kum95] Sandeep Kumar’s original Ph.D. thesis. An in-depth description of
intrusion detection, the theoretical considerations behind IDIOT, and a description of the model that
was used to implement IDIOT.

taxonomy.ps [KS95] Thisreport classifies UNIX vulnerabilities based on the signatures required to detect
them, and gives the best overview on how to write IDIOT patterns with examples from real UNIX
vulnerabilities. We recommend that you read this document last before you start writing patterns of
your own.

IDIOT -work.ps [ES96b] This report outlines the structure of IDIOT, explaining how the components fit
and work together. It also describesresultsfrom profiling IDIOT against two audit trails and suggests
possible approaches to optimizing the program.

debugging IDIOT.ps [ES96a] This report describes changes made to IDIOT code which allow a greater
flexibility in the amount and type of debugging information generated. It also describes a sample
IDIOT program that has been included and a utility for separating the debugging information based
on itsorigin, pattern or server.

Chapter 2

Quick Start

The information in this chapter will help you get IDIOT running as fast as possible. However, we suggest
that you read the rest of the material in this document before you attempt to use IDIOT.

The following steps must be executed to install IDIOT correctly:

¢ Read thisdocument at least once

Edit the Makefile to set the appropriate values for your site
Givethe command “make C2_appl”

Make sure that pr audi t isinyour path

e RunIDIOT

For the rest of this section we give an example of how to install and run IDIOT for the first time.
We start in adirectory that containsonly the IDIOT tar file:

solaria 51 % pwd
/. mor dor / hone/ gol | uni | DI OT

solaria 52 %ls
idiot.tar

Extract the filesfrom thet ar file:

solaria 53 %tar xfv idiot.tar

doc, O bytes, O tape bl ocks

doc/ manual , O bytes, O tape bl ocks

doc/ manual / docs. ps, 135856 bytes, 266 tape bl ocks

doc/I1DIOT, O bytes, 0 tape bl ocks

doc/ | DI OT/ kunar - i nt det - phddi ss. ps, 903856 bytes, 1766 tape bl ocks
doc/ | DI OT/ kunar - spaf - over vi ew. ps, 673780 bytes, 1316 tape bl ocks
doc/ | DI OT/ t axonony. ps, 645109 bytes, 1260 tape bl ocks
C2_patterns, 0 bytes, O tape bl ocks
C2_patterns/creating-setid-scripts, 440 bytes, 1 tape bl ocks
C2_patterns/ executing-progs, 1618 bytes, 4 tape bl ocks
C2_patterns/|pr_copy_files, 1295 bytes, 3 tape bl ocks
C2_patterns/print-nknods, 918 bytes, 2 tape bl ocks
C2_patterns/setuid-wites-setuid, 3026 bytes, 6 tape bl ocks
C2_patterns/writing-to-executable-files, 2671 bytes, 6 tape bl ocks
C2_patterns/writing-to-nonowned-files, 1711 bytes, 4 tape bl ocks
apps, 0 bytes, 0 tape bl ocks

apps/profile.C, 1831 bytes, 4 tape bl ocks

apps/jig.C, 1625 bytes, 4 tape bl ocks

other_C2_patterns, 0 bytes, O tape bl ocks

ot her _C2_patterns/3-failed-1ogins, 1166 bytes, 3 tape bl ocks

ot her _C2_patterns/access-open-to-sane-path-di ff-inodes, 4522 bytes, 9 tape bl ocks
ot her _C2_patterns/bin-mail, 2534 bytes, 5 tape bl ocks

XX X X X X X X X X X XXX XXXXXXXX

ot her _C2_patterns/clarke-w |son, 2813 bytes, 6 tape bl ocks

ot her _C2_patterns/dir-browser, 1266 bytes, 3 tape bl ocks

ot her _C2_patterns/dont-fol |l owsymlinks, 2938 bytes, 6 tape bl ocks

ot her _C2_patterns/fail ed-su, 307 bytes, 1 tape bl ocks

ot her _C2_patterns/finger, 1041 bytes, 3 tape bl ocks

other_C2_patterns/le, 1525 bytes, 3 tape bl ocks

ot her _C2_patterns/passwd- Fattack, 1593 bytes, 4 tape bl ocks

ot her _C2_patterns/priv-pgmin-userspace, 575 bytes, 2 tape bl ocks

other _C2_patterns/rcw, 2185 bytes, 5 tape bl ocks

ot her _C2_patterns/setid-pgnms-cant-spawn-shell, 1076 bytes, 3 tape bl ocks
ot her _C2_patterns/shel |l -script-attack, 532 bytes, 2 tape bl ocks
other_C2_patterns/tftp, 1239 bytes, 3 tape bl ocks

other _C2_patterns/timng-attack, 1122 bytes, 3 tape bl ocks

ot her _C2_patterns/witing-to-nonowned-dot-files, 1057 bytes, 3 tape bl ocks
audit_trails, 0 bytes, O tape bl ocks

audit _trails/creating-setid-scripts.audit_trail, 42632 bytes, 84 tape bl ocks
audit_trails/executing-progs.audit_trail, 20389 bytes, 40 tape bl ocks

audit _trails/lpr_copy_files.audit_trail, 1125555 bytes, 2199 tape bl ocks
audit _trails/print-nknods.audit_trail, 23070 bytes, 46 tape bl ocks
audit_trails/setuid-wites-setuid.audit_trail, 15496 bytes, 31 tape bl ocks
audit_trails/witing-to-executable-files.audit_trail, 8975 bytes, 18 tape bl ocks
audit _trails/witing-to-nonowned-files.audit_trail, 8376 bytes, 17 tape bl ocks
C2_Server.C, 15997 bytes, 32 tape bl ocks

DL_list.h, 2807 bytes, 6 tape bl ocks

pattern.l, 8072 bytes, 16 tape bl ocks

C2_Server.h, 3425 bytes, 7 tape bl ocks

Expr.C, 14448 bytes, 29 tape bl ocks

praudit.h, 3174 bytes, 7 tape bl ocks

C2_appl . C, 5500 bytes, 11 tape bl ocks

| P_Server.C, 47532 bytes, 93 tape bl ocks

C2_events. h, 12287 bytes, 24 tape bl ocks

showaudit.pl, 16986 bytes, 34 tape bl ocks

utilities.C, 4086 bytes, 8 tape bl ocks

utils.h, 3248 bytes, 7 tape bl ocks

Makefile, 9519 bytes, 19 tape bl ocks

DL_Ilist.C, 1087 bytes, 3 tape bl ocks

abs_cl ass. h, 1282 bytes, 3 tape bl ocks

pat.y, 74752 bytes, 146 tape bl ocks

DL_Ilist.h, 1445 bytes, 3 tape bl ocks

pattern. h, 14607 bytes, 29 tape bl ocks

READVE, 24 bytes, 1 tape bl ocks

XX X X X X X X X X XXX XXXXXXXXXXXXXXXXXXXXXXXXXXXX

solaria 54 %ls

C2_Server.C DL_list.h audit _trails/ praudit.h
C2_Server.h Expr. C doc/ showaudi t. pl *
C2_appl . C | P_Server.C idiot.tar utilities.C
C2_events. h Makefil e other_C2_patterns/ utils.h
C2_patterns/ READVE pat.y

DL_Ilist.C abs_cl ass. h pattern.h

DL_Ilist.h apps/ pattern.|

Make the C2_appl application:

solaria 56 % /usr/local/gnu/ meke C2_appl

/ opt / SUNWspr o/ bi n/ CC -xpg +d -c¢ C2_appl.C

"C2_appl.C', line 138: Warning (Anachronisnm: Fornal argument patternfile of type char*
incall to C2_Server::parse_file(char*) is being passed const char*.

"C2_appl.C', line 138: Note: Type "CC -nmigration" for nore on anachronisns.

"C2_appl .C', line 144: Warning (Anachronism: Formal argunent file of type char* in call

to C2_Server::dllink_file(char*) is being passed const char*.
2 Warning(s) detected.

/ opt / SUNWspr o/ bi n/ CC -xpg +d -c C2_Server.C

"lusr/include/sys/sysmacros. h", |line 104: Warning (Anachronism: Attenpt to redefine
nmej or wit hout using #undef.

"lusr/include/ sys/sysmacros. h", line 104: Note: Type "CC -nmigration" for nore on
anachr oni sms.

"lusr/include/sys/sysmacros. h", line 109: Warning (Anachronism: Attenpt to redefine
m nor wi thout using #undef.

"lusr/include/sys/sysmacros. h", line 115: Warning (Anachronism: Attenpt to redefine

nakedev wi t hout using #undef.
3 Warning(s) detected.
yacc -d -v pat.y
2 rul es never reduced

conflicts: 11 shift/reduce, 2 reduce/reduce

/ opt / SUNWspr o/ bi n/ CC -xpg +d -c -0 yacc.o y.tab.c

"pattern.h", line 432: Warning (Anachronism: Tenporary created for argunent newt in
call to Table<int>::push(int&).

"pattern.h", line 432: Note: Type "CC -nmigration" for nore on anachronisns.

1 Warning(s) detected.

lex pattern.|

/ opt / SUNWspr o/ bi n/ CC -xpg +d -c -0 lex.o lex.yy.c

"pattern.h", line 432: Warning (Anachronism: Tenporary created for argunent newt in
call to Table<int>::push(int&).

"pattern.h", line 432: Note: Type "CC -nmigration" for nore on anachronisns.
1 Warning(s) detected.

/ opt / SUNWspr o/ bi n/ CC -c -xpg +d Expr.C -0 Expr.o

"pattern.h", line 432: Warning (Anachronism: Tenporary created for argunent newt in
call to Table<int>::push(int&).

"pattern.h", line 432: Note: Type "CC -nmigration" for nore on anachronisns.

1 Warning(s) detected.

/ opt / SUNWspr o/ bi n/ CC -xpg +d -c utilities.C

/ opt / SUNWspr o/ bi n/ CC -xpg +d C2_appl.o C2_Server.o yacc.o lex.o Expr.o \
utilities.o -1dl -lIrwool -1gen -o C2_appl

Make sure that the pr audi t command in in the execution path.

sol aria % which praudit
/ usr/sbin/praudit
solaria 65 % set path=($path /usr/sbin)

Run the C2_appl aplication to test the program. In this case we will compile, link and run a sample
pattern and audit trail shipped with IDIOT. Parse the pattern:

solaria 57 % ./ C2_appl

tini> parse C2_patterns/creating-setid-scripts

Parsing file C2_patterns/creating-setid-scripts

Inside stnt reduced expr: printf("User id % has successfully setid ed %ile %\n",
uni fi ed_t ok->get _RUID(), unified_tok->get_FULL_NAVE())

Inside stnt reduced expr: ((((eve->ERR() == 0) &&
uni fi ed_t ok->assi gn_RU D(eve->RUID())) &&

uni fi ed_t ok->assi gn_FULL_NAME(eve->0BJ())) &&
eve- >OBJ_NEWMODS() > 511)

CC -pic -G-g -0 cr_setid_pgns.so cr_setid_pgns.C

"cr_setid_pgns.C', line 290: Warning (Anachronism: Formal argunent val of type char*
incall to C2_cr_setid_pgns_Token::assign_FULL_NAVE(char*) is being passed const char*.
"cr_setid_pgns.C', line 290: Note: Type "CC -nmigration" for nore on anachronisns.

1 Warning(s) detected.

Done conpiling cr_setid_pgns.C

I nside create pattern.

Instantiated new pattern instance for cr_setid_pgns

Link the resulting compiled pattern:

tini> dlink /homes/gollun | Dl OT/cr_setid_pgns.so
Linking file /homes/gollun | Dl OT/ cr_setid_pgns. so
I nside create pattern.

Run the pattern with the corresponding audit trail.

tini>run audit_trails/creating-setid-scripts.audit_trail

Showaudit: will execute the follow ng conmand: tail +0 audit_trails/creating-setid-scripts.audit_trail | praudit -r |
User id 833 has successfully setid ed file /.nordor/hone/ gol | unl aaa. aaa

User id 833 has successfully setid ed file /.nordor/hone/ gol | un bbb. bbb

User id 833 has successfully setid ed file /.nordor/hone/gollun ccc.ccc

User id 833 has successfully setid ed file /.nordor/hone/gol | unm ddd. ddd

Showaudit: No of dropped events = 147

Showaudit: Could not followthe next audit file at ./showaudit.pl |ine 92.

NOTE: If you get an error messageof theformDon’ t handl e events of type 0 yet! then
IDIOT was not able to open the audit trail. Verify that the praudit program isin your path and try again.

4

Chapter 3

IDIOT Patterns

There are currently three classes of pattern being shipped with IDIOT. They are:

1. Written and tested patterns. These are patterns that we have written and tested and can present audit
trailsknown to trigger the patterns.

2. Written but not tested. These patterns were written but could not be tested either through lack of time
or limitationsin the underlying audit trail.

3. Theoretical patterns. These patterns are written to demonstrate a particular point, but cannot be
handled by the IDIOT system currently.

Each of the following sections describes the different pattern types.

3.1 Written and Tested patterns

These patterns have been written and tested. They are shipped as working patterns to demonstrate IDIOT's
capabilities, and to be used in area environment.

These patterns can be found inthe C2_pat t er ns directory. The audit trails to exercise these patterns
are in adirectory audi t -t rai | s under the main IDIOT distribution directory. Each pattern has an
associated audit file named <pat t er n_nane>_audi t _fi | e intheaudi t _t r ai | s directory.

3.1.1 Detecting when programs create setuid programs. PATTERN: creating-setid-scripts

Very few programs should create setuid files and system administrators often run programs that search the
file system looking for unauthorized setuid files. This pattern will warn when aprogram creates a seuidfile.

Vulner abilities detected

Many vulnerabilities can sometimes be detected with this pattern.

State machine

Figure 3.1 illustrates the pattern.

CHMOD

Figure 3.1: State machine

Pattern being used

pattern cr_setid_pgnms "Mnitor creation of setid prograns.” priority 7
state start, after_chnod;
str FULL_NAME;
int RUD;
post _action {
printf("User id %l has successfully setid ed file %\n", RU D, FULL_NAME);
}

trans chnod(CHVOD)
<- start;
-> after_chnod;

I_
this[ERR] = 0 & RUID = this[RU D] && FULL_NAME = this[OBJ] &&
t hi s[OBJ_NEWMODS] > 511;
}
end chnod;
end cr_setid_pgns;

Note: thefinal clause in thisguard would be best written as:

(thi s[OBJ_NEWVODS] & 06000) && (thi s[OBJ_NEWVODS] & 0111)

Discussion

The pattern described in this document was tested under Solaris 2.4 using the BSM C2 audit trail generated
by theaudi t d daemon.

An attacker, a user called gollum, ran the following exploit script.

#!'/ bin/ sh

touch aaa. aaa
touch bbb. bbb
touch ccc.ccc
touch ddd. ddd

chnod 2750 aaa. aaa # setgid
chrmod 4755 bbb. bbb # setuid
chmod ugo+xs ccc. ccc # setuid and setgid
chnod 6007 ddd. ddd # undefined (setuid and segid
but not executabl e)

CGet rid of the files created
rm aaa. aaa bbb. bbb ccc.ccc ddd. ddd

The execution of IDIOT server with the audit trail generated for user gollum produces the following
output:

User id 833 has successfully setid ed file
User id 833 has successfully setid ed file
User id 833 has successfully setid ed file
User id 833 has successfully setid ed file

. nor dor/ hone/ gol | unf aaa. aaa
. nor dor/ hone/ gol | unf bbb. bbb
. nor dor/ hone/ gol | unf ccc. ccc
. nor dor/ hone/ gol | unf ddd. ddd

—_———

3.1.2 Detecting the execution of attack programs. PATTERN: executing-progs

Sometimes users import attack scripts and run them with little or no modifications. We can detect the
execution of well known attack scripts and programs by searching for well-known program names.

Vulner abilities detected

CA-93:14 Internet Security Scanner will scan sitesfor potential security holes.

CA*** Crack tool for obtaining passwords.

State machine

Figure 3.2 illustrates the pattern.

EXECVE
After_exe(

Figure 3.2: State machine

Pattern being used

extern str Basenane(str);

pattern ex_prt_pgns "Watch for executions of cops/gime etc." priority 7
state start, after_exec;
str FULL_PROG PROG
int RUD;

post _action {
printf("User id %l has successfully executed %\n", RU D, FULL_PROG);
}

/
The routine Basenane is defined as a call to the systemfunction
basenane. Gven a pointer to a null-term nated character string that
contains a path nane, basename() returns a pointer to the last el enment
of the path. Trailing "/" characters are del eted.

* ok kR k ok
-

trans exec(EXECVE)
<- start;
-> after_exec;
| _{ this[ERR] = 0 & RUID = this[RU D && PROG = Basenane(this[PROF) &&

FULL_PROG = t hi s[PROG &&
(PROG =" "cops" || PROG =" "gimme" || PROG =" "crack"); }
end exec;

end execute_particul ar_pgns;

Note: this pattern can also detect the [CA-95:06] advisory on the SATAN tool. This can be done by
adding PROG ="sat an" to thelast clause in the guard.

Discussion

How does this pattern work? It is composed of essentially one transition — when an EXECVE occurs, it
checks to see if the executed program is one of the prohibited list. If it is, then the pattern has terminated,
and the post action istaken. This prints out afriendly informational message.

We need to know two things while executing this pattern; the name of the program being exec’'d and
the user id of the user executing the program. When theexecve system call is executed, the name of the
program to execute is specified. Thisis recorded in the audit file. We can access this program name using
thet hi s[PROG] construct, which returns the program name from this audit record. We record the full
program name in the variable FULL_PROG o it can be displayed in the post action. Thisvariableis of type
st r, whichisastring class from the Rogue Wave library.

The user idisreturned using thet hi s[RUI D] construct. It extracts the uid field of the audit record.
We assign it to alocal variable so it can be displayed later in the post action.

To actually detect running a specific program, we use the pattern matching operator =" . Thisworks as
in PERL. In thiscase, we are only interested in exactly the filename specified.

The pattern described in this document was tested under Solaris 2.4 using the BSM C2 audit trail
generated by the audi t d daemon. An attacker, a user called gollum, has the following files in his home
directory:

gollum%ls -1

S TWKTWAT - - 2 gollum gollum 10 Nov 26 18:13 crack*

S TWKEWAT - - 1 gollum gollum 45 Nov 26 18:14 exploit*

S TWKTWAT - - 2 gollum gollum 10 Nov 26 18:13 hidden_hard*

| rwxr wxr wx 1 gollum gollum 5 Nov 26 18: 14 hidden_sym -> crack*

Theexpl oi t script executed contains the commands:

#!'/ bin/ sh
./crack

./ hi dden_sym
./ hi dden_hard

The execution of IDIOT on the audit trail generated for user gollum on produces the following output:

User id 833 has successfully executed /. nordor/hone/ gol | un crack
User id 833 has successfully executed /. nordor/hone/ gol | un crack

The program has detected two of the three executions of the programcr ack. Infact, the two instances
detected arethefirst twolinesof theexpl oi t script. Itisunfortunatethat we cannot detect which execution
produces which line of output. As shown next, the audit trail events generated for both are identical.

header, 118, 2, execve(2),, Sun Nov 26 18:16:12 1995, + 258009000 nsec
pat h, /. nordor/ hone/ gol | un crack

attribute, 100764, gol | um gol | um 38535233, 40582, 0

subj ect, gol | um gol | um gol | um gol | um gol | um 17720, 18887,0 5 sol aria
return, success, 0

header, 119, 2, execve(2),, Sun Nov 26 18:16:12 1995, + 348002000 nsec
pat h, /. nor dor/ hone/ gol | un crack

attribute, 100764, gol | um gol | um 38535233, 40582, 0

subj ect, gol | um gol | um gol | um gol | um gol | um 17721, 18887,0 5 sol aria
return, success, 0

3.1.3 Ipr can copy afileover any arbitrary file: PATTERN: Ipr _copy _files

Thelineprinter program can bemadeto overwritearbitrary filesonthe system. | pr isasetuid root program
that copies files to print into the spooler directory. The files are then printed from the spooler directory.
If the - s option is used, the | pr program creates a link to the file in the spool directory. However, the
temporary names created in the spool directory will wrap around after 1000 print jobs.

By forcing these names to wrap around, the| pr program can copy an arbitrary file over a link which
points to a destination file. This will cause the destination file to be overwritten, even if the user did not
have permission to access that file.

Vulner abilitiesdetected

8lgm -Advisory-3.UNIX.lpr.19-Aug-1991 | pr can overwrite any arbitrary file.

State machine

Figure 3.3 illustrates the pattern.

after_exec after_copy

EXECVE CREAT

Figure 3.3: Detect |pr copying arbitrary files

Pattern being used
I+
* | pr_copy_files
* Detects if Ipr tries to overwite a file outside of /usr/spool
* [8l gni-Advisory-3.UNI X. | pr.19- Aug- 1991
* Mark Crosbhie February 1996

*/

extern int inTree(str, str);
extern int true_print(str);

extern int strmatch(str, str);
pattern | pr_copy_files "l pr copies files not in spool dir" priority 7

state start, after_| pr_exec, after_copy;
str PROG FILE;

int RUD, PID

post _action {
printf("User % attenpted to copy over file %\n", RUD, FILE);
}
/* the invariant states that we will delete tokens in the state
* machi ne once the process exits. |If |pr exits, there's no point
* continuing to try to match for the attack.
*/

neg invariant first_inv /* negative invariant */
state start_inv, final;
trans exit(EXIT)
<- start_inv;
-> final;
|_{ PID=this[PID]; }
end exit;
end first_inv;
trans exec_| pr (EXECVE)
<- start;
-> after_| pr_exec;
I_
this[ERR] = 0 & PID = this[PID] &% PROG = this[PROG &&
RUD = this[RU D &&
(strmatch(".*lpr", this[PROG) = 1) & this[EUID = 0;
end exec_| pr;
trans do_copy(CREAT)
<- after_| pr_exec;
-> after_copy;
I_{
this[ERR] = 0 & this[PID] = PID & FILE = this[OBJ] &&
(inTree(""/var/spool /", this[OBJ]) = 0);
}
end do_copy;

end | pr_copy_files;

Discussion

The | pr command is a setuid root program that places files in the spool directory on behalf of users.
Typicaly it places a copy of the file in the spool directory, but if given the - s option, it will create a
symboliclink to thefile in the spool directory. If given the - g option, it will place thefile in the directory,
but not enqueueit for printing.

Thefilesinthe spool directory have avery predictable name. The name of aspool file startswithcf for
acontrol fileand df for itsassociated datafile. For example, executing the command! pr -Poz -q -s
. al i ases (where oz isthe nameof our local printer), createsthetwofilesinthe/ var / spool / | pq/ oz
directory:

STWT W - - - 1 daenon daenon 152 Feb 19 17:54 cf A278yavi n. cs. purdue. edu
| rwxr wxr wx 1 root daenon 23 Feb 19 17:54 df A278yavi n. cs. purdue. edu -> / hone/ ncrosbi e/ . al i ases

The number after the cf A and df A part of the file names will increment after every print command.
Thus, after athousand print commands, thefiledf A278yavi n. cs. pur due. eduwill be reused.

The essence of this attack isto create alink in the spool directory to afile you want to overwrite. Then,
execute a thousand prints until the number in the spool directory filename wraps around, then print the file

10

you want to overwrite with. The | pr program will write over the existing link, and as it is setuid root, it
can overwrite whatever that link pointed to.

ThelDIOT pattern presented above detectsthis attack by seeing if thel pr program overwritesany files

outside of the/ var / spool directory tree. If o, it printsawarning. The audit trail in Solaris encodes the
final destination filename when accessing a link, so thisis available to the pattern.

A sample run is shown below:

tini> run audit_data/l pr_copy_files.audit_data

Showaudit: will execute the follow ng conmand: tail +0 audit_data/lpr_copy_files.audit_data | praudit -r |
Showaudit: No of dropped events = 123

User 727 attenpted to copy over file /home/ntrosbie/tnp/overwitene

User 727 attenpted to copy over file /home/ ntrosbie/tnp/overwitene

tini> Program ended

3.1.4 Print all executionsof nknod. PATTERN: print-mknods

If a user creates a device, it is possible to access the disk or other system resources without proper
authorization. For example, if auser created adevice in alocal directory with the same device numbers as
theroot disk, then that user could access and change any information on the disk.

Pattern State Machine

The state machineisvery simple and is shown in Figure 3.4.

MKNOD

after_mknod

Figure 3.4: State machine for detecting mknods

Pattern code

/
print-nknods

Print all successful nknods

Mark Crosbie Novenber 1995
/

* ok ok ok k% ok

/* returns TRUE if the node of the file corresponds to a bl ock speci al
* or char special file - is it a device?

*
/
extern int isdev(int);
pattern nknod "Print all successful nknods" priority 7
state start, after_nknod;
int RUD, DEV,

/* path of the device the user created */
str PATH;

/* report creating a device */

11

post _action {
printf("User id %l successfully created a device in %.\n", RU D, PATH);

/* only one transition needed - if we see a MKNOD event then see if
* the user has successfully created a device
*/
trans makenode(MKNCD)
<- start;
-> after_nknod;

I_{
/* isdev() returns TRUE if the device node used in the nknod()
* indicates a device type (either char or block special)
*/
this[ERR] = 0 && isdev(this[DEV_.MXDE]) = 1 &&
RUD = this[RUI D] & PATH = this[OBJ];

end makenode;
end nknod;

Discussion

When adeviceis created, themknod commandisused. A parameter specifiesthe mode used to create the
device. If thismodeindicatesthat thisisablock special or character special file, then the messageis printed.

A utility routinei sdev () isused to check the mode of the device being created. If thisis special file
(i.e. adevice), i sdev() returns TRUE. If thisoccurs, and the MKNOD succeeded, then the user ID and
path of the device are recorded and displayed.

Output from IDIOT

IDIOT produces the following output when presented with the attack audit trail:

tini> run audit_data/ nknod. audi t _data

Showaudit: will execute the follow ng conmand: tail +0
audi t _dat a/ mknod. audit _data | praudit -r |

User id O successfully created a device in

/ home/ ntr osbi e/ nyl DI OT/ audi t _dat a/ xxx.

Showaudit: No of dropped events = 79

3.1.5 Detecting when setuid programs write to setuid or executable programs. PATTERN:
setuid-writes-setuid

Very few setuid programs should write to other setuid or executable files, and many attack scenarios share
these characteristics. Rogue setuid programswill often create setuid shellsor ater system owned executable
programs to alter their behavior. Hence, it is desirable to detect whenever such behavior and report it as
suspicious.

This pattern will warn when a setuid program creates or opens a seuid file (or executable program) for
write. It will also report when a setuid program opens a setuid or executable file for read only, using the
open system call, and specifies that the file should be created if it does not already exist.

Vulner abilities detected

Many of the vulnerabilities listed below can sometimes be detected with this pattern. In particular, when
any of these setuid programs creates or opens a setuid or executablefile.

12

8lgm-Advisory-3.UNIX.Ipr.19-Aug-1991 Any user with access to | pr can alter system files and thus
become root. We can only detect the vulnerability if | pr creates or opens for write a setuid or
executablefile.

8lgm-Advisory-11.UNI X.sadc.07-Jan-1992 sadc can be used to create files in normally unwritable di-
rectories. sadc normally runs egid sys, and therefore can be used to create files in group sys
writeable directories. We can only detect the vulnerability if sadc creates or opensfor write a setuid
or executablefile.

8lgm-Advisory-5.UNIX.mail.24-Jan-1992 A race condition exists in bi nmai |, which alows files to
be created in arbitrary places on the filesystem. These files can be owned by arbitrary (usually
system) users. We can only detect the vulnerability if bi nmai | creates or opensfor write a setuid or
executablefile.

8lgm-Advisory-6.UNIX.mail2.2-May-1994 The old race condition still exists in the patched bi nrai |,
which allows files to be created in arbitrary places on the filesystem. These files can be owned by
arbitrary (usually system) users. We can only detect the vulnerability if bi nmai | creates or opens
for write asetuid or executable file.

8lgm-Advisory-15.UNI X.mail3.28-Nov-1994 A holein bi nmai | allowsfiles to be created as root. We
can only detect the vulnerability if bi nmai | creates or opensfor write a setuid or executable file.

CA-95:05 Sendmail Vulnerabilities February 22, 1995. This advisory supersedes all previous CERT
advisorieson sendnai | . The CERT Coordination Center has received reports of severa problems
withsendmai | , oneof whichiswidely known. Theproblemsoccurinmany versionsof sendnai | .
We can only detect the vulnerability if sendmai | creates or opens for write a setuid or executable
file.

CA-95:08 Sendmail v.5 Vulnerability August 17, 1995. In sendnuai | version 5, there is a vulnerability
that intruders can exploit to create files, append to existing files, or execute programs. We can only
detect the vulnerability if sendnmai | creates or opensfor write a setuid or executable file.

State machine

Figure 3.5 illustrates the pattern.

Pattern being used

extern int isexec(int), issid(int);

I+
* Very few setuid programs should wite to other setuid or executable
* files. This pattern will warn when a setuid program creates or
* opens a seuid file (or executable program) for wite.

pattern setuidwitessetuid "setuid program wites to a setuid or executable file" priority 10
int PID
str FILE;
str PROGNAMNE;
state start, after_exec, violation;

post _action {

printf("setuid program % created/opened for wite the setuid or executable file %.\n",
PROGNAME, FI LE);

}

13

OPEN

OPEN_RW

EXECVE ‘ ~
After_exec

OPEN_RC

Figure 3.5: State machine

14

neg invariant first_inv /* negative invariant */
state start_inv, final;

trans exit(EXIT)
<- start_inv;
-> final;
|_{ PID=this[PID]; }
end exit;
end first_inv;

trans exec(EXECVE)
<- start;
-> after_exec;
|_{ this[ERR] = 0 & PID = this[PID && issid(this[OBJ_MDS]) =1
&& PROGNAME = t hi s[PROJ ;
end exec;

trans nod3(CREAT)
<- after_exec;
-> violation;
|_{ this[ERR] = 0 & PID = this[PID] && FILE = this[OB]] &k
(isexec(this[OBI_MODS]) =1 || issid(this[OBI_MXDS]) = 1); }
end nod3;

trans nod4(OPEN_RW
<- after_exec;
-> violation;

|_{ this[ERR] = 0 & PID = this[PID] && FILE = this[OB]] &k
(isexec(this[OBI_MODS]) =1 || issid(this[OBI_MXDS]) = 1); }
end nod4;

trans nod5(OPEN_RWC)
<- after_exec;
-> violation;

|_{ this[ERR] = 0 & PID = this[PID] && FILE = this[OB]] &k
(isexec(this[OBI_MODS]) =1 || issid(this[OBI_MXDS]) = 1); }
end nod5;

trans nod6(OPEN_RWIC)
<- after_exec;
-> violation;

|_{ this[ERR] = 0 & PID = this[PID] && FILE = this[OB]] &k
(isexec(this[OBI_MODS]) =1 || issid(this[OBI_MXDS]) = 1); }
end nod6;

trans nod7(OPEN_RWI)
<- after_exec;
-> violation;

|_{ this[ERR] = 0 & PID = this[PID] && FILE = this[OB]] &k
(isexec(this[OBI_MODS]) =1 || issid(this[OBI_MXDS]) = 1); }
end nod7;

trans nod8(OPEN W
<- after_exec;
-> violation;

|_{ this[ERR] = 0 & PID = this[PID] && FILE = this[OB]] &k
(isexec(this[OBI_MODS]) =1 || issid(this[OBI_MXDS]) = 1); }
end nod8;

trans nod9(OPEN_WO)
<- after_exec;
-> violation;

|_{ this[ERR] = 0 & PID = this[PID] && FILE = this[OB]] &k
(isexec(this[OBI_MODS]) =1 || issid(this[OBI_MXDS]) = 1); }
end nod9;

trans nod10(OPEN_WIC)
<- after_exec;
-> violation;

|_{ this[ERR] = 0 & PID = this[PID] && FILE = this[OB]] &k
(isexec(this[OBI_MODS]) =1 || issid(this[OBI_MXDS]) = 1); }
end nod10;

trans nod11(OPEN_WI)
<- after_exec;
-> violation;

|_{ this[ERR] = 0 & PID = this[PID] && FILE = this[OB]] &k
(isexec(this[OBI_MODS]) =1 || issid(this[OBI_MDS]) = 1); }
end nodl11;

trans nod12(OPEN_RC)
<- after_exec;
-> violation;

|_{ this[ERR] = 0 & PID = this[PID] && FILE = this[OB]] &k
(isexec(this[OBI_MODS]) =1 || issid(this[OBI_MXDS]) = 1); }
end nod12;

15

end setuidwitessetuid;

Discussion

The pattern described in this document was tested under Solaris 2.4 using the BSM C2 audit trail generated
by theaudi t d daemon. The following setuid programs were created:

/* Program testl */
#i ncl ude <stdio. h>

#i ncl ude <sys/types. h>
#i ncl ude <sys/stat.h>
#include <fcntl. h>

main() {
/* create a setuid executable file */
creat("testl.cl”, S ISUD| SIRMU| SIWRP);
}

/* Program test2 */
#i ncl ude <stdio. h>

#i ncl ude <sys/types. h>
#i nclude <sys/stat.h>
#include <fcntl. h>

mai n() {
/* Create a setuid program*/
open("test2.cl", O CREAT, SISUD| SIRMU| S IVWRP);
/* Open the setuid programcreated by programtestl */
open(“"testl.cl", O RDWR);

}

An attacker, a user called gol | um ran these two program in order.

The execution of the IDIOT server on the audit trail generated for user gol | umon produces the
following output:

setui d program/hone/ krsul /test1l created/ opened for wite the
setuid or executable file /.nordor/hone/gollunftestl.cl.

setui d program/hone/ krsul /test2 created/ opened for wite the
setuid or executable file /.nordor/hone/gollunftest2.cl.

setui d program/hone/ krsul /test2 created/ opened for wite the
setuid or executable file /.nordor/hone/gollunftestl.cl.

3.1.6 Writing to Executable Files. PATTERN: writing-to-executable-files
Writing to an executable file is often evidence of viral behaviour. A virus may attempt to affect a program
by inserting code at the start of the file which will be executed before the program contained in the code.

Thisisvery common on MSDOS machines. However, a UNIX system may still be vulnerable to thistype
of attack if executable files are left in place with write permission for users or groups.

Vulner abilities detected

Any activity in which an executable file iswritten to.

16

Pattern State Machine

The pattern is very simple. For each process that is EXECed, the pattern detects writes to a file by that
process that has the execute permission bits set. If such awrite is detected, the pattern hasfired. Figure 3.6
showsthis.

OPEN_WT

OPEN_WTC

OPEN_WC
OPEN_W

violation

EXECVE

OPEN_RWTC

OPEN_RWT

Figure 3.6: State machine for pattern to detect viral be-
haviour

Pattern code

/
writing-to-executable-files

Detect prograns witing to executable files which may be an
indication of viral behaviour

~ % % ok E % %

Mark Crosbie February, 1996

*

extern int isexec(int);
extern int true_print(str);

pattern virus "Progranms witing to executable files (viral behavior)" priority 10
int PID, EUD; /* pattern local variables. may be initialized. */
str FILE, PROG
state start, after_exec, violation;
/* post action sinply reports on attack */
post _action {
printf("Program % running as EU D %l wote to the executable file %.\n",
PROG EUI D, FILE);
}

/* There can be >= 1 invariants */

17

/* this invariant kills a token if its corresponding parent exits */
neg invariant first_inv /* negative invariant */
state start_inv, final;

trans exit(EXIT)
<- start_inv;
-> final;
|_{ PID=this[PID]; }
end exit;
end first_inv;

/* pattern description follows */

/* EXECVE is the event type of the transition - executing a process */
trans exec(EXECVE)
<- start;
-> after_exec;
|_{ this[ERR] = 0 & PID = this[PID] && PROG = this[PROG &&
EUD=this[EUD]; }
end exec;

/* OPEN_RW- open a file for read or wite */
trans nod4(OPEN_RW
<- after_exec;
-> violation;
|_{ this[ERR] = 0 & PID = this[PID] && FILE = this[OBJ] &k
i sexec(this[OBIJ_MDS]); }
end nod4;

trans nod5(OPEN_RWC)
<- after_exec;
-> violation;
|_{ this[ERR] = 0 & PID = this[PID] && FILE = this[OBJ] &k
i sexec(this[OBIJ_MDS]); }
end nod5;

trans nod6(OPEN_RWIC)
<- after_exec;
-> violation;
|_{ this[ERR] = 0 & PID = this[PID] && FILE = this[OB]] &k
i sexec(this[OBIJ_MDS]); }
end nod6;

trans nod7(OPEN_RWI)
<- after_exec;
-> violation;
|_{ this[ERR] = 0 & PID = this[PID] && FILE = this[OB]] &k
i sexec(this[OBIJ_MDS]); }
end nod7;

trans nod8(OPEN W
<- after_exec;
-> violation;
| _{ this[ERR] = 0 & /* if this operation succeeded */
PID = this[PID] & /* and this PID matches that of the exec */
FILE = this[OBJ] && /* renmenber this filename */
isexec(this[OBI_MODS]); } /* if this file is executable */
end nod8;

trans nod9(OPEN_WO)
<- after_exec;
-> violation;
|_{ this[ERR] = 0 & PID = this[PID] && FILE = this[OB]] &k
i sexec(this[OBIJ_MXDS]); }
end nod9;

trans nod10(OPEN_WIC)
<- after_exec;
-> violation;
|_{ this[ERR] = 0 & PID = this[PID] && FILE = this[OB]] &k
i sexec(this[OBIJ_MDS]); }
end nod10;

trans nod11(OPEN_WI)
<- after_exec;
-> violation;
|_{ this[ERR] = 0 & PID = this[PID] && FILE = this[OBJ] &k
i sexec(this[OBIJ_MDS]); }
end nodl11;

end virus;

18

The pattern seems complex, but isessentially very simple. The pattern starts by detecting the execution
of anew process using the EXECVE transition. Fromthisaf t er _exec state, it detects any open calls that
could potentially write over a file which has its execute permission bits set. Thei sexec function isin
utilities.Candreturns TRUE if afileis executable. Thiscan be computed by information about the
opened file stored in the audit trail. The types of open call detected are:

¢ OPEN_Wopen for write.

e OPEN.WC open for write and create if not present.

e OPEN.W open for write and truncate to zero sizeif present.

e OPEN.WI'C open for write and create and truncate to zero size.
¢ OPEN RWopen for read or write.

¢ OPEN.RWC open for read or write and create if not present.

e OPEN.RWI open for read or write and truncate to zero length.

¢ OPENLRWI'C open for read or write and create if not present and truncate to zero size.

If any of these occur and the file is executable, we could have potential viral activity on the system. It
could also indicate a attempt to install atrojan horse on the system. Thiswould be a version of a program
that had similar functionality but installed a malicious piece of code.

Discussion

Thepatternwill only detect aprocess being executed that overwritesexecutables. A seriesof shell commands
to overwrite an executable won't be detected, because each shell command results in a new process with a
new PID. The PID attribute of the tokenswon't be unifiable.

Why does this pattern not detect WRI TE events? In the Solaris BSM audit trail the write events are
subsumed under the OPEN event. So the audit trail for awrite looks as follows (output of pr audi t):

header, 136, 2, open(2) - read,wite,, Tue Feb 20 18:53:34 1996, + 846005000 nsec
pat h, / hore/ ntr osbi e/ nyl DI OT/ audi t _dat a/ execut abl e

attribute, 100711, ncrosbi e, ncrosbi e, 8388638, 193085, 0

subj ect, -2, ncroshi e, ncrosbi e, ntrosbi e, ntrosbi e, 20085,0,0 0 0.0.0.0

return, success, 4

The audit trail was gathered with thef waudit mask flag. This gathers data about file writes. Theopen
call isrecorded, butthewr i t e call isnot. The above audit trail corresponds to the following code fragment
fromexploit-wite.c

if((fd=open("./executable", O RDWR)) < 0) {
perror(" open: ");
exit(1);

}

printf("Exploit: witing to executable...\n");
if(wite(fd, "abcdef", 6) < 6) {

perror(" wite: ");

exit(1);
}

19

Thus, we are forced to detect writes to executable files by detecting the opening of the file, and not the
actual write.

This pattern can also be written without the EXECVE transition. In effect it would then check every
write on the system to seeif it overwrites an executable file.

3.1.7 Writing to nonowned files. PATTERN: writing-to-nonowned-files

Users often create filesin their home directories that are world writable. Thisis often because of aumask
setting that does not disable the world write bits. Or, users may be sharing information via world writable
files. Either way, thisis a potential avenue for attack, as any information can be written into a non-owned
filefor later retrieval. Thismay alow an attacker to hide stolen information or plant atrojan horsein another
user’sdirectory. Intheworst case, an attacker could place a ++ into aworld-writable. r host s file owned
by another user, leaving that user’s account open to abuse.

Pattern State Machine

The state machine for this pattern is presented in Figure 3.7.

OPEN_WTC

OPEN_RWTC

OPEN_RWT

Figure 3.7: State machine for pattern to detect writing to
nonowned files

Pattern code

The code for the patternis as follows:

20

writing-to-nonowned-files

Check a if a process is witing to files which it doesn't
own.

This could indicate potential viral activity

Mark Crosbie February 1996

*

~ % kR ok ok %k k F

extern int true_print(str);
pattern unwanted_wites "Witing to nonowned files" priority 7
nodup state start, final; /* only two states needed */
int PID, EUD; /* record pertinent information about process */
str PATH;
post _action {
printf("Pid %, user id % wote %, a nonowned file.\n", PID, EUD, PATH);
}
/* for each type of wite event recorded in the audit trail, see if

* the owner of the file and EUD of the process doing the wite
* differ. If so, this indicates overwiting a non-owned file.

*/
trans witel(OPEN_W
<- start;
-> final;
| _{ this[ERR] = 0 & /* the action succeeded */
this[OBJ_OMER] != this[EUID && /* ownderships don't match */

PID = this[PID] & /* renenber PID of this process */
EUD = this[EU D && /* remenber EU D of user */
PATH = this[OBJ]; /* remenber path to file being overwitten */

end witel;

trans wite2(OPEN_WC)
<- start;
-> final;
|_{ this[ERR] = 0 && this[OBJ_OMER] != this[EU D] && PID = this[PID &&
EUD = this[EU D && PATH = this[OBJ];
}

end wite2;
trans wite3(OPEN_WI)
<- start;
-> final;
|_{ this[ERR] = 0 & this[OBJ_OMER] !=this[EUD] & PID = this[PID &&
EUD = this[EU D] & PATH = this[OBJ];
end wite3;
trans wite4(OPEN_WC)
<- start;
-> final;
|_{ this[ERR] = 0 & this[OBJ_OMER] !=this[EUD] & PID = this[PID &&
EUD = this[EU D] & PATH = this[OBJ];
}

end wite4;

end unwanted_writes;

The pattern lookscomplex, but isessentially very simple. It detects any writesto afilethat hasan owner
field (OBJ_OWNER) that differs from the current effective user ID (EUI D). If so, then the pattern reports the
write as being suspicious.

Discussion
Thispatternisvery simple. If theowner of afile differsfromtheeffective user ID of theprocesswritingtothe

file, then the post action reports this. Note, see the description forwr i ti ng-t o- execut abl e-fil es
for more details on how the audit trail represents write events.

21

3.2 Written but untested patterns

This section describes patterns that are written but untested. These patterns can be tested in the current
IDIOT implementation, but they are being shipped “as is’ without any testing.

Thesepatterns can befound intheot her _C2_pat t er ns directory under themain IDIOT distribution.

3.21 PATTERN: Ipd_delete files

This pattern attempted to detect the CERT vulnerability outlined in CERT Advisory CA91:10.a. Thel pd
line printer daemon can be made to delete files outside of the usual / var / spool directory by exploiting
arace condition. The race condition exists between the time the file is copied into the spool directory and
the timethefileisremoved from the directory. By changing thefile to alink, it was possible to remove any
file on the system (as| pd ran as root).

This pattern cannot be tested on our machines, because our | pd daemon has the fix in place and we
cannot replace it without seriously disrupting the local printing environment in COAST.

However, thecoretransitioninthe pattern detectsadelete (an UNLI NK event) occuring with adestination
outside of a specified directory tree. It usesthei nTr ee() external function (foundinutilities. Cto
match the file being deleted with the path prefix / usr/ spool . If no match isfound, then we conclude
that | pd istrying to delete afile outside of the print spool directory.

trans del et e(UNLI NK)
<- after_| pd_exec;
-> after_del ete;

_{
this[ERR] = 0 & this[PID] = PID & FILE = this[OBJ] &&
(inTree("/usr/spool”, FILE) = 0);
}

end del ete;

3.22 PATTERN: failed_su

Thisis a very simple pattern that reports all failed su attempts. Most system consoles also report similar
information. The pattern simply looks for SU events in the audit trail that have an er r attribute of 1,
indicating that they have failed.

3.2.3 PATTERN: finger

This pattern attempts to detect the f i nger program spawning a program other than finger. This was
motivated by the Internet worm attack where the stack for thef i nger daemon was overwritten and caused
anew program to be spawned.

This pattern cannot be tested because it hard codes the inode value for the finger daemonf i ngerd
and the finger program f i nger into the pattern. This will change from site to site, and from system to
system. The pattern should be rewritten to allow amore portable specification of the location of the daemon
program.

22

3.24 PATTERN: priv-pgm-in-user space

This pattern attempts to detect a privileged program executing in user space. It does this using the
i nUser Space() external function.

3.25 PATTERN: rcw

This pattern attempts to verify integrity using Clarke-Wilson triples. More information on this pattern and
Clarke-Wilson integrity triples can be found in Section 4.8.9 of thet axonony. ps fileinthedoc/ | DI OT
directory of the distribution.

3.2.6 PATTERN: shell-script-attack

Certain classes of attack make a shell execute and pass it strange command line arguments. A favourite
attack isto run a shell with acommand line argument of - i . Thisgives an interactive shell. If, somehow,
aroot shell can be spawned from a program with the- i option, an intruder has an interactive root shell on
the system.

The key to this pattern is thistransition:

trans exec(EXECVE)
<- start;
-> after_exec;

I_{
this[ERR] = 0 & RUID = this[RUID] && PROG = this[PROG &&
islink(this[PROG) && shell _script(this[PROG) &&
(Basenane(this[PROG) = ""-");

end exec;

The Basenane() external function gets the actual name of the program being executed, with the
leading path component stripped off. If thisname startswith a- symbol, the pattern indicates that something
suspicious has occured.

3.27 PATTERN: tftp

Thispattern attemptsto detect thet f t p program accessing files outsideof thet f t pboot / directory. This
could indicate an attacker using the TFTP protocol as an attack vector.

This pattern has too many hardcoded constants to be useful in its current form. It hardcodes the inode
numbers for the tftp program into the pattern. This should be changed to a more natural way of specifying
the name of the program.

3.2.8 PATTERN: bin-malil

This pattern attempts to detect the / bi n/ mai | program writing to a file that has its setid bit on, or is
executable. The pattern is very straightforward. The execution of the mail program is checked by the
transition on the EXECVE event. Thisis coded rather awkwardly — it detects the execution of the mail
program by looking at the inode of the argument to the exec() call. Thisis very system dependent, and
should be fixed.

23

It then checks to seeif that program opens any files for writing that have their execute bit set (using the
i sexec() utility function) or have their setid bit set (using the i ssi d() function). In either case, the
pattern triggers, indicating that the mail program probably has been subverted.

The invariant deletes any tokens associated with a process when that process exits. Thus, as a mail
program runs it generates a token in the machine, and once that program exits, all tokens associated with it
are deleted.

3.2.9 PATTERN: setid-pgms-cant-spawn-shell

A setuid program is not allowed to spawn a program with the effective user id unchanged. Thiswould allow
attackers to subvert (say) the mail program, and make it spawn a shell with an effective user id of root.

This pattern is conceptually ssmple — if an EXECVE occurs of a shell program and the EUID changes
after thecall, then trigger the pattern. However, because of aweaknessin Sun BSM auditing, thisinformation
isnot available. Instead, the pattern must monitor on a per-user basis — if a user executes a setid program
that then spawns a shell with auser id different from the user’s, it triggers the pattern. Thisislessflexible
than the generic pattern, but isworkable under Sun BSM auditing.

3.3 Theoretical patterns

This section describes theoretical patterns. These patterns cannot be tested in the current IDIOT implemen-
tation, and are written for instructive purposes only.

Thesepatterns can befound intheot her _C2_pat t er ns directory under themain IDIOT distribution.

3.3.1 PATTERN: access-open-to-same-path-diff-inodes

The general problem that this pattern tries to detect is that of an attacker to exploit the small window of
opportunity that exists between programs checking the validity of the files and the actual opening of thefile
for writing. If an attacker can slow down the system, by running the program with a very high nice value,
for example, he can replace the file that has been validated with another of hischoosing.

passwd - F Attack In SunOS

Thepasswd command can be directed to treat another file as the password file using the- F option. Before
opening thisfile for writing, and depending on the version of Unix oneisusing, the passwd program will
attempt to determine that the user can indeed read and write to the file by either opening it for read, calling
theaccess systemcal or callingthest at systemcall. If after thischeck has been completed, and before
thefile is actually opened for writing, the user changes the path name to point to the real system password
file, the passwd program will operate on thisfile assuming it is still working with the original file.

24

xt er mLogging Attack

Xt er mneeds to run as root because it needs to chown thetty it alocates to interact with the user. Logging
is a security hole because of the race condition between access check permissions to the logging file and
the logging itself. When given the - | f option, xt er mcreates a file by calling the cr eat system call
and immediately changes the uid and gid of the file to match that of the user running the program and start

logging.
The problem appears when a user gives the following sequence of commands:

nknod foo p # foo is the FIFO naned pi pe
xterm-1f foo # creat will open the FIFO and bl ock because there
is no process reading the other end of the pipe
nv foo junk
In -s /etc/passwd foo
cat junk # Now that there is a reader at the other side of the
naned pipe, the creat systemcall returns and
the next statenent executed is the chnod system
call that will change the permi ssion of the /etc/passwd
file so that the user can add and delete entries.

Although more difficult to exploit, the patched version of xt er mcontinues to have a similar problem.
The code described above got replaced by:

1 if(access(screen->logfile, F_.OK) ! = 0) {
2 if (errno == ENCENT)
3 creat _as(screen->uid, screen->gid, screen->l ogfile, 0644);
4 el se
5 return;
6}
7
8 if(access(screen->logfile, F. OK) !'= 0
9 || access(screen->logfile, WOK) != 0)
10 return;
11
12 if((screen->l ogf d=open(screen->| ogfil e, O WRONLY| O_APPEND, 0644)) <0)
13 return;

The cr eat system call was replaced by the cr eat _as routine. This routine forks a child process
that changes its permissions to that of the user before it attempts to create the file, effectively eliminating
the previous race condition. Unfortunately, a race condition, although much harder to exploit, still exists
between the access cal in line 8 and the open call inline 12. If a user can slow down this program
and time things right, after the access call succeeds, the log file can be replaced by a link to the real
/ et c/ passwd file. Thext er mprocess will open the/ et ¢/ passwd for writing, and append to it the
information that it is supposed to log.

Vulner abilities detected

CA-93:17 xt er mLogging Vulnerability.
8lgm 5/11/1994 The passwd command takes a- F option in SunOS.

Pattern State Machine

The state machine is shown in Figure 3.8.

25

EXECVE

Figure 3.8: Attack state machine

26

Pattern code

I
* passwd 8l gm advi sory, xterm CA-93:17 advisory

*

* Detects the classic "w ndow of -opportunity” exploitation. Used in
* passwd program and xterm | oggi ng bug.

*

* Mark Crosbie Nov. 1995

* lvan Krsul Nov. 1995

*

*/

extern int inode(str); /* returns the inode for this particular file */

pattern aotspdi "access-open-to-sane-path-diff-inodes" priority 7
state start;
nodup state after_access;
nodup state after_create;
nodup state after_open;
state after_exec;
state violation;

int PID, INOCDE, EUD, RUD
str FILE, PROG

post _action {
printf("Violation\n");
}

I
* this invariant states that the patterns are matched as long as this
* process is running
*/
neg invariant inv /* negative invariant */

state start_inv, final_inv;

trans proc_exit(EXIT)

<- start_inv;

-> final _inv;

|_{ this[PID = PID; }
end proc_exit;

end inv;
I

* This transition is taken if the execve does not result in an error and the

* programexecuting is setuid root. Well..... not quite. We are testing this
* programbut don't want to introduce a vulnerability... or at least not a big
* one, so we will check for those prograns whose efective user id is not the
* sane as the real user id.

*/
trans execl(EXECVE)

<- start;

-> after_exec;
|_{ this[ERR] = 0 & PID = this[PID] && PROG = thi s[PROG
& EUID = this[EUID] & RUID = this[RUD] & EUD!= RUD; }
end execl;

trans exec2(EXEC)
<- start;
-> after_exec;
|_{ this[ERR] = 0 & PID = this[PID] && PROG = thi s[PROG
& EUID = this[EUID] & RUID = this[RUD] & EUD!= RUD; }
end exec2;

I
* This transition is taken when a programcreates a file calling the create
* systemcall
*/

trans create(CREAT)
<- after_exec;

-> after_create;
|_{ this[ERR] = 0 & PID = this[PID] && | NODE = thi s[OBJ_I NODE]
&& FILE = this[OBI]; }
end create;

/

*
* Prograns can also create files by calling the OPEN.WC or OPEN WIC cal | and
* closing them The next three tansitions are designed to catch this.
*
trans opencreat el(OPEN_WC)

<- after_exec;

-> after_open;

|_{ this[ERR] = 0 & PID = this[PID] && | NODE = thi s[OBJ_I NODf]

&& FILE = this[OBI]; }

end opencreatel;

27

trans opencreat e2(OPEN_WC)
<- after_exec;
-> after_open;
|_{ this[ERR] = 0 & PID = this[PID] && | NODE = thi s[OBJ_I NODf]
&& FILE = this[OBI]; }
end opencreat e2;

trans cl ose(CLCSE)

<- after_open;

-> after_create;

|_{ this[ERR] = 0 & PID = this[PID] && I NODE = this[OBJ_I NODE]; }
end cl ose;

I+
* After a file has been created, if the sane file path was used as a
* paranmeter to the chown or chnod routine but the inode is different
* then we have a violation!

*/
trans chnod(CHVOD)
<- after_create;
-> violation;
|_{ this[ERR] = 0 & PID = this[PID &&
I NODE ! = this[OBJ_I NODE] && FILE = this[OBJ]; }
end chnod;

trans chown(CHOM)
<- after_create;
-> violation;
|_{ this[ERR] = 0 & PID = this[PID &&
I NODE ! = this[OBJ_I NODE] && FILE = this[OBJ]; }
end chown;

I
* The folling transitions are taken after a successful exec if a file is tested
* for existence with the stat or access call

*/
trans access(ACCESS)

<- after_exec;

-> after_access;

|_{ this[ERR] = 0 & PID = this[PID] & |NODE = this[OBJ_I NODf]

&& FILE = this[OBI]; }

end access;

trans stat (STAT)
<- after_exec;
-> after_access;
|_{ this[ERR] = 0 & PID = this[PID] & |NODE = this[OBJ_I NODf]
&& FILE = this[OBI]; }
end stat;

I
* |f the sane file that was opened for read is now opened for wite
* and the inode nunber has changed then we have a problem
*/

trans witel(OPEN_W
<- after_access;

-> violation;
|_{ this[ERR] = 0 & PID = this[PID] && I NODE ! = this[OBJ_I NODf]
&& FILE = this[0BI]; }
end witel;

trans wite2(OPEN_WC)
<- after_access;
-> violation;
|_{ this[ERR] = 0 & PID = this[PID] && I NODE ! = this[OBJ_I NODf]
&& FILE = this[OBI]; }
end wite2;

trans wite3(OPEN_WI)
<- after_access;
-> violation;
|_{ this[ERR] = 0 & PID = this[PID] && I NODE ! = this[OBJ_I NODf]
&& FILE = this[OBI]; }
end wite3;

trans wite4(OPEN_WC)
<- after_access;
-> violation;
|_{ this[ERR] = 0 & PID = this[PID] && I NODE ! = this[OBJ_I NODf]
&& FILE = this[OBI]; }
end wite4;

end aot spdi;

28

Discussion

This pattern can detect the attack by seeing if the inode for the file has changed. How does this happen?
When thefileisfirst opened, it will have an inode given by the destination of the link. If an attacker moves
the original file and creates in its place alink that to pointsto to another file, thisinode will change. Thus,
by detecting this change in inode value, the attack can be detected.

Unfortunately, this pattern cannot be used as iswith the Basic Security Module C2 logging provided by
Sun with Solaris 2.4. For this pattern to work, the audit trail would need to provide, at least, the following
information:

. execve: ERROR, EUID, RUID, PID, and program name
. creat: ERROR, PID, initia file name, final file name, and inode number
. open: ERROR, PID, initia file name, final filename, and inode number

. ¢l ose: ERROR, PID, inode, initia file name, and final file name

. chonpd: ERROR, PID, inode, initia file name, and final file name

1

2

3

4

5. chown: ERROR, PID, inode, initial file name, and final file name
6

7. access: ERROR, PID, inode, initial file name, and final file name
8

. st at: ERROR, PID, inode, initia file name, and final file name

Theonly itemsthat require explanation are thefile names. If wehaveasymboliclink sy il that pointsto
afilefil 1thenacall tochnod("synl", node) would require an audit trail record that would indicate
that the chnod system call was executed on theinitial file name syl and the final file namefi| 1. The
inode should be the one corresponding to the final name.

The audit trail generated by the Basic Security Module provided with Solaris 2.4 violatesthe file names
requirement. To see why thisis important, consider the following fragment of a setuid C program called
xt er nbug:

/* Create a log file called xternbug.log */
if(creat("xternbug.log",0) > -1) {
/* The permi sions of the created file were set to 0x00000. Change them
to sonet hing nore reasonable */
if(chnod("xternbug.log", S IRWKU S_IRWKG S IRWKO) == -1) {
fprintf(stderr, "Could not change the permnission of file xternbug.log\n");
}
} else {
fprintf(stderr, "Could not create log file xternbug.log\n");
}

and an attack script that will exploit thevulnerability describedinthisdocumentiscalled xt er mbug. expl oi t:

#!'/ bin/ sh

nknod xternbug.log p

xternbug &

sleep 1

nv xt ernbug. | og junk

In -s /homes/ krsul / break_me xternbug. | og
cat junk

cat /hones/ krsul / break_ne

29

This attack can not be detected by the pattern described in this document if you are using the Basic
Security Module logging in Solaris 2.4. The audit trail generated for this session, reformatted for clarity
and brevity, with the attacker called gollum, and the victim called krsul, is:

execve(2) - path,/honme/gollunf xternbug. exploit - EU D gollum- RU D gollum
execve(2) - path,/usr/sbin/nknod - EU D gollum- RU D gollum
nknod(2) - argunent, 2, 0x11b6, node - argunent, 3, 0x0, dev
pat h, /. nordor/ hone/ gol | um xternbug.log - EU D gollum- RU D gollum
chown(2) - argunent, 2,0x341,new file uid - argunent, 3,0x341,new file gid
pat h, /. nordor/ hone/ gol | um xternbug.log - EU D gollum- RU D gollum
execve(2) - path,/honmes/krsul/bin/xternmbug - EUI D krsul - RU D gol |l um
execve(2) - path,/usr/bin/sleep - EUD gollum- RUD gollum
execve(2) - path,/usr/local/bin/nmv - EU D gollum- RUD gollum
10 renanme(2) - path,/.nordor/hone/ gol | uni xt er nbug. | og
11 pat h, /. nordor/ hone/ gol |l um junk - EUI D gollum- RU D gol | um
12 execve(2) - path,/usr/bin/In - EUD gollum- RUD gollum
13 synmlink(2) - text,/hones/krsul/break_ne - path,/.nordor/hone/gol | un xternbug. | og
14 EU D gol lum- RU D gol | um
15 execve(2) - path,/usr/bin/cat - EUD gollum- RUD gollum
16 creat(2) - path,/.nordor/hone/gol | un xternbug.log - argunent, 3, 0x2, stropen: flag

OCoOo~NOUhWNRF

17 EU D krsul - RU D gollum
18 chnod(2) - argunent, 2,0x1ff,new file node - path,/hones/krsul/break_ne
19 EU D krsul - RU D gollum

20 execve(2) - path,/usr/bin/cat - EUD gollum- RU D gollum

Notice that in line 20, the audit trail indicates that the chnmod(2) system call was made to the file
/homes/krsul/break_me. While this is ultimately true, it does little to help detect the exploitation of the
vulnerability. The pattern design specifically looks for achnod or chown to the same file name as the
cr eat but with different inode numbers. The audit trail should mention that the original call was made to
filext er mbug. | og.

3.3.2 PATTERN: 3-failed-logins

This pattern attempts to detect failed login attempts. Specifically, it looks for more than 3 failed login
attemptsin a 3 minute time period. This could indicate that a password attack is occuring against a user
account.

This pattern cannot be tested because IDIOT currently does not support a CLK event. The idea behind
a aCt:tLK event is to allow timing information to be incorporated into the pattern. Consider the code for the
pattern:

/* CLK has not been inplenented yet */
neg invariant inv
state start_inv, final_inv;

trans cl k(CLK)
<- start;
-> final;
|_{ this[TIME - time > 180; }
end clk;
end inv;

/* pattern description follows */
trans fail 1(LOG N)
<- start;
-> after_faill;
I_
this[ERR] = 1 & ruid = this[RU D] & tine = this[TIMg];
}
end fail1;
trans fail 2(LOG N)
<- after_faill;
-> after_fail 2;
I_
this[ERR] = 1 & ruid = this[RUD;
}
end fail 2;

trans fail 3(LOG N)

30

<- after_fail2;
-> after_fail3;
I_
this[ERR] = 1 & ruid = this[RUD & this[TIME - tine < 180;

}
end fail 3;

The first failed login attempt setsthe t i e attribute of the token. This is taken from the timestamp
information in the audit trail. Thethird failed login attempt can use thisto make atransitionif lessthan 180
seconds (3 minutes) has passed. The CLK event occurs at predicatable timeintervals (say every second). It
isused in theinvariant to delete any tokensthat have been in the state machine for longer than 3 minutes.

The CLK event should to simpleto add to IDIOT and would provide great flexibility in writing patterns
to detect failed login, network access and other object creation attempts.

3.3.3 PATTERN: dir _browser

This pattern detects a user browsing through directories. It does this by counting the number of change-
directory events in the audit trail. Normally a user executes afew chdi r commandsin a session, but an
abnormally high number of these commands could indicate someone browsing where they shouldn’t be.

Thispattern cannot betested becauseit usesthe CL K event as described in the previoussection. However,
itillustrates auseful way of detecting if someoneisbrowsing through sensitive directories. It usesthe inode
of a shell process to identify which process to monitor — most users browse using their shell. It then
counts the number of CHDI R (change directory) events in the audit trail. If this count exceeds a threshold,
it triggers the pattern.

334 PATTERN: le

This pattern teststo seeif an ethernet device was put into promiscuous mode. In the words of the comments
to the pattern:

Establishing a hardlink to /dev/le and opening the hardlink is not
possi bl e because hard |inks cannot be established across devices. Don't
know how to test for promiscuity yet.

This pattern may not be possible to implement at all, but isincluded as an example.

3.3.5 PATTERN: port walk

This pattern attempts to detect a port walk attempt. It uses accept eventsin the audit trail to detect an
intruder connecting to ports across the machine in an attempt to see what services are running. It cannot be
tested or implemented as IDIOT does not support theaccept event yet. If it were extended to handle such
events, then awide variety of network attack patterns could be detected. See the section on limitations of
auditing for more information.

3.3.6 PATTERN: dont-follow-sym-links

Thispattern attemptsto detect asetuid root program following asymboliclink. Thisapotential vulnerability
as an attacker could replace the link with alink to another file, and subvert the operation of the setuid root

31

program.
This pattern contains a subtle flaw. Consider the following code snippet:

trans open5(OPEN_R)
<- start;
-> after_open;
|_{ this[ERR] = 0 & this[EUD = 0 & islink(this[OB]]) &&
FILE = this[OBJ] & PID = this[PID; }
end open5;

This code detects if afile was opened for reading by a process running with root prvileges. It usesthe
i slink() cal totestwhether thefilewasalink. Thisisamistake— the state of the file system may have
changed between when the audit data was generated and the pattern is being run. Thisis explained in the
section on External declarationsin the technical documentation.

This pattern is an example of how not to use external functions to carry out computations. External
functions should never query system state that may change between when the audit trail was generated and
when the patternis run.

3.3.7 PATTERN: timing-attack

This pattern aso uses the CLK event, but to detect a race condition attack where a file is unlinked and
relinked to a new destination before being accessed. Thisisa classic “time-to-check-to-time-to-use” attack.

Thefirst transition records the timethat shell script startsto execute aprogram pointed to by alink. The
next transition is taken when the same file is unlinked within 1 second. The final transition is taken if that
same file isrelinked to a different location within 1 millisecond. This triggers the pattern — an attacker is
attempting to relink asetuid link to point at a file he/she wishes to gain access to.

The invariant in this pattern deletes any tokens that have been in the state machine for longer than 5
seconds. Asthe CLK event is not implemented, thisinvariant won't compile under the current version of
IDIOT.

32

Chapter 4

Users Guide

4.1 The C2_appl Application

Testing a pattern is a straightforward procedure. It involves compiling the pattern, linking the pattern into
aprogram that can process the pattern and running the pattern with an audit trail. In IDIOT the three steps
are performed using the same program: C2_appl! .

The patterns can be stored in arbitrary directories. The example shown here assumes that the pattern is
stored in a directory called $1 DI OT_HOVE/ C2_pat t er ns. Note that the descriptions of these patterns
are normally not located in this directory.

To compile a pattern run the C2_appl application and type the command “par se <pattern
name>". The following figure is an example of compiling a pattern from the C2_appl application:

$ cd $I DI OT_HOVE
$./ C2_appl
tini> parse C2_patterns/setuid-wites-setuid

tini> parse C2_patterns/setuid-wites-setuid

I nside stnt reduced expr: printf("...\n")

Pushing state "start_inv" into the invariant
Pushing state "final" into the invariant

The states in this invariant are 2, which are:
start_inv

final

Inside stnt reduced expr: unified_tok->assign_PlD{eve->PlD())

Parsing invariant transition exit
<sone states del et ed>

Parsing transition npdll

Inside stnt reduced expr: ((((eve->ERR() == 0) &&
uni fi ed_t ok->assi gn_PI D(eve->PI D())) &&

uni fi ed_t ok->assi gn_FI LE(eve->0BJ())) &&
((isexec(eve->0BJ_MXDS()) == 1) ||
(issid(eve->0BJ_MIDS()) == 1)))

33

Parsing transition nodl12

start -> exec
<-

after_exec -> nod3, nod4.....
<- exec

violation ->

CC -pic -G-g -0 setuidwitessetuid.so setuidwitessetuid.C
<some war ni ngs del et ed>

11 Warning(s) detected.

Done conpiling setuidwitessetuid.C

I nside create pattern.

Instantiated new pattern instance for setuidwitessetuid
tini>

After compilation of the pattern you should be able to see the C++ and relocatable files produced
in the $I DI OT_HOVE directory. The files generated will have the name that was indicated in the
first line of the pattern description. For example, in the following pattern the name given to the pat-
ternisset ui dwri t esset ui d and hence the resultant files will be set ui dw i t esset ui d. Cand
setui dwi tessetuid. sa

pattern setuidwitessetuid "setuid wites to a setuid file" priority 10
int PID

str FILE;

str PROGNAMNE;

state start, after_exec, violation;

<portion of the pattern del eted>

trans nod12(OPEN_RC)
<- after_exec;
-> violation;
|_{ this[ERR] = 0 & PID = this[PID] && FILE = this[OBJ] &k
(isexec(this[OBI_MODS]) =1 || issid(this[OBI_MXDS]) = 1); }
end nod12;
end setuidwitessetuid;

After you have compiled the pattern you must link it to the C2_appl program by issuing the “dl i nk
<pattern nanme> command. Note that the pattern needs to be compiled only once and can be linked
many times in many different runs. In the following example the pattern compiled earlier in this section is
linked in adifferent session.

$ cd $I DI OT_HOVE

$ pwd # where are we?

/' homes/ gol | um' | DI OT

$./ C2_appl

tini> dlink /homes/gollun | Dl OT/ setui dwitessetuid.so
I nside create pattern.

tini>

Running the pattern on an audit trail involvesgivingthe“run <audit trail file> command.
The following figure shows an example of running a pattern on a C2 audit trail.

$ cd $I Dl OT_HOMVE

$ pwd # where are we?
/' homes/ gol | um' | DI OT

$Is -1 /hones/gollunmtrails/wites-setuid.audit_trail
-rwrw--- 1 gollum 15496 Dec 2 16:34 trails/setuid-wites-setuid.audit_trail
$./ C2_appl

tini> dlink /homes/golluni | Dl OT/ setui dwitessetuid.so
I nside create pattern.
tini>run /hones/gollunmtrails/wites-setuid.audit_trail
Showaudit: will execute the follow ng conmand:
tail +0 trails/setuid-wites-setuid.audit_trail | praudit -r |
setui d program /home/ gol | unfvul ner/testl created/ opened for wite \
the setuid or executable file /.nordor/home/golluntestl.cl.
setui d program /home/ gol | unfvul ner/test2 created/ opened for wite \
the setuid or executable file /.nordor/home/gollunftest2.cl.
setui d program /home/ gol | univul ner/test2 created/ opened for wite \
the setuid or executable file /.nordor/home/gollunftestl.cl.
Showaudit: No of dropped events = 56
tini>

You can turn on debugging onthe C2_ser ver that C2_appl application runs by issuing the command
“server debug 1°. Thefollowing figure illustratesturning on debugging.

$ cd $I Dl OT_HOMVE

$ pwd # where are we?

/' homes/ gol | um' | DI OT

$ Is -1 /hones/gollunmtrails/wites-setuid.audit_trail

-rwrw--- 1 gollum 15496 Dec 2 16:34 trails/setuid-wites-setuid.audit_trail
$./ C2_appl

tini> dlink /homes/gollun | Dl OT/ setui dwitessetuid.so

I nside create pattern.

tini> server debug 1

tini> run /hones/gollunmtrails/wites-setuid.audit_trail

Showaudit: will execute the follow ng conmand:
tail +0 trails/setuid-wites-setuid.audit_trail | praudit -r |
FORK, TIME(817581176), RUID(833)........ CBJ_INO = 0
CLOSE, TIME(817581177), RUID(833)........ OBJ_INO = 0
CLOSE, TIME(817581177), RUID(833)........ CBJ_INO = 0

<debug infornmation del et ed>

setui d program /home/ gol | unfvul ner/testl created/ opened for wite \
the setuid or executable file /.nordor/honme/gollunftestl.cl.

CLCOSE, TIME(817581179), RUID(833).............. OBJ_INO = 4113
CLCOSE, TIME(817581179), RUID(833).............. OBJ_INO = 4113
EXIT, TIME(817581179), RUD(833)............... ERR(0) , RET(0)
Showaudit: No of dropped events = 56

tini>

4.2 Writing IDIOT Patterns

This section will take a step-by-step approach to writing a pattern. Along theway, each element of a pattern
will be described. This will enable you to read an IDIOT pattern and understand what it is doing, and to
write your own patterns.

Asan example, we will use theot her _C2_patterns/| pr_copy_fil es pattern. We will explain
each part of the pattern as it is devel oped.

4.2.1 Bascstructureof a pattern
A pattern consists of four key components:

1. Anamefor thepattern—| pr _copy_fi | es inour case. Thenameisfoundjust after thepat t er n
keyword.

35

2. A post action which is executed when the pattern is matched.
3. Aninvariant which specifies when tokens are to be deleted.

4. A set of transitions between states, with associated guard expressions.

Of these, the post action and invariant are optional. A pattern without a post action doesn’t make much
sense as it won't be able to report to the outside world. A pattern need not have an invariant if it does not
need to delete tokens.

The genera structure for a pattern isas follows:

<external declarations>

pattern <pattern nane> ["optional coment"] priority <priority value>
<state decl arations>
<t oken col or decl arations>
[post _action { <post action code> }]

[neg invariant <invariant nane> /* optional invariant */
<invariant state declarations>

trans <transition nane>(<event>)
<- <transition fromstate nane>;
-> <transition to state nane>;
| _ { <guard expression>;}
end <transition name>;
end <invariant nane>;]
/* actual pattern transitions start here */
trans <transition 1 name>(<event>)
<- <transition from state nane>;
-> <transition to state nane>;
| _ { <guard expression>;}
end <transition 1 nanme>;
trans <transition 2 name>(<event>)
<- <transition from state nane>;
-> <transition to state nane>;

| _ { <guard expression>;}
end <transition 2 nane>;

end <pattern nane>;

There can be more than oneinvariant. Each invariant is given aunique name. Aninvariant is specified
like areal pattern — it can have multiple states.

The external declarations refer to functions that will be used to perform computations in the pattern.
They are covered in detail in Section 5.2.

The pattern name follows the pat t er n keyword. This must agree with the name at the end of the
pattern following the end keyword. This will be the name of the pattern C++ code generated when this
pattern is parsed. So inour case, | pr _copy_fil es will generate| pr _copy_fi |l es. C which will be
compiledto! pr _copy_fil es. so. Note, the pattern name and the name of the file containing the pattern
do not haveto agree. The pattern nameiswhat is used.

4.2.2 Statedeclarations
The state declarations section is where the states of the pattern are listed. Thisis similar to declaring a

variable — the st at e keyword specifies that the variable names following it are actually states in the
IDIOT pattern. For example,

36

state start, after_| pr_exec, after_|pr_copy;

specifies three states — the start state, and two other named states. These names are used in the transition
section to specify what transitions connect what states. Note, the start state does not have to be explicitly
denoted as such — when the transitions are parsed, the start state is deduced.

States can be declared nodup. Thismeansthat tokenswill not be duplicated when they move from that
state. Typically, a token which satisfies a guard will be duplicated into the state after the guard, leaving a
token behind. A nodup state means that the token moves into the new state, and no token remainsin the
source state. The start state cannot benodup’d. To declare astatenodup do:

nodup state this_is_a_nodup_state;

4.2.3 Token color declarations

Tokens have bindings associated with them that can carry values along as the token moves through the
machine. For example, in our pattern, we might want to record the user id of the person who executed the
| pr command and the process id of the command itself. We declare two variables to store these values:
RUl Dand PI D

int RUD, PID

These variables can now be used in the guard expressions. Once assigned to, they will storeavaluethat is
bound to that token as it moves through the state machine — consider them as“local variables’ to a token.
Each token will have a unique pair of these variables as every execution of thel pr command will have a
unique PID assigned to it.

How are these variables set and used? We will discuss this when we describe transitions.

4.2.4 Thepost action

The post action code is executed when the pattern is matched. It is usually used to inform the system
operator that a potential intrusion has occurred, or it could take active steps to halt the intrusion (such as
shutting down the system). The post action code is norma C code, and it can reference any of the local
variables declared in the pattern.

425 Theinvariant

Every time a pattern is evaluated, the invariant is also evaluated. This controls the deletion of tokens from
the machine. Why is this necessary? Consider our example pattern again. Every timethel pr program
is executed, a token will move from the start state to the af t er _| pr _exec state. But this invocation of
| pr may be completely innocent. Thusthat token will remaininthe af t er _I pr _exec state. Over time,
tokens will accumulate in the machine increasing processing time and causing memory overflow. Thuswe
need a mechanism to delete tokens that are no longer necessary.

For every token that is placed in the start state of the main pattern, a token is placed in the start state
of the invariant state machine. Events drive the tokens through both the main pattern and the invariant
pattern. If atoken reaches thefinal state in the invariant state machine, the corresponding token, andall its

37

descendents, are deleted from the main pattern state machine. To do this, IDIOT maintains a link between
tokensin the main pattern machine and those in the invariant machine. This deletion happens automatically.
Aninvariant is specified using the same syntax as anormal pattern transition. In our example, there are

only two states to the invariant machine, with one transition between them. The following code showsthe
invariant:

neg invariant first_inv /* negative invariant */

state start_inv, final;

trans exit(EXIT)
<- start_inv;
-> final;
|_{ PID=this[PID]; }

end exit;

end first_inv;

The transition is named exi t and it leads from state st ar t _i nv to state f i nal . These states are
declared prior to the transition specification. Thistransitionistaken when an EXI T event occursinthe audit
trail — when a process has exited. The PI D attribute is available in this event, and it gives the processid
of the exiting process. Our invariant guard states that any token whose PID color matches the PID attribute
from this event will be deleted. In simple terms, al tokens created by this process will have the same
PID value. When the same process exits, we will delete all these tokens using this invariant. The guard
expressioninthe| - ... section will be explained in Section 4.2.7.

Thisis a very common invariant. A lot of patterns will delete tokens associated with a process once
that process exits. Another common invariant is deleting tokensthat no longer can form part of an intrusion
attempt. For example, intheot her _C2_pat t erns/ 3-f ai | ed- | ogi nspattern, the invariant deletes

any tokens that have been in the system for longer than 3 minutes. This pattern looks for 3 failed login
attempts within the space of 3 minutes, so keeping tokens around for any longer is pointless.

neg invariant inv
state start_inv, final_inv;

trans cl k(CLK)
<- start_inv;
-> final _inv;
|_{ this[TIME - time > 180; }
end clk;
end inv;

The CLK event has not been implemented yet.

4.2.6 Unification - binding valuesto tokens

Before we can discuss transitions and guards, the concept of unification must be discussed. IDIOT uses
unification to test guard expressions. An expression isunifiableif the value on the left hand side and that on
the right of the = sign can be combined. The reader is refered to standard textbooks on thistopic: [Set89]
for example. Simply put, an expression of theformx = y isunifiableif x andy both have the same value.
If one of x or y does not have a value bound to it, it assumes the value of the other variable. This alows
assignment to occur, without requiring unique assignment and equality operators.

4.2.7 Patterntransitions

After the invariant comes a list of the transitions. There is no special order to each transition, as IDIOT
computes the placement of the states based on the transition specifications. Each transition is contained
withinatrans ... endblock.

38

A transition is associated with a particular audit event. In our example pattern, the two transitions are
associated with EXECVE and CREAT respectively. A transition will only betaken if its corresponding event
occurs, and its guard is satisfied.

A guard is a boolean expression that must be satisfied before a token can transit a guard. The boolean
expressions in IDIOT are expressed in a C-like syntax. They are evaluated |eft-to-right with short circuit
evaluation. This means that if a component of the guard causes the whole guard to evaluate to false,
evaluation halts. Most guards are specified in conjunctive normal form — a conjunction of clauses.
Conjunction is specified using the AND operator, whichis&&in C (and IDIOT).

The guard for the transition exec_| pr looksasfollows:

I_{
this[ERR] = 0 & PID = this[PID] && PROG = this[PROG &&
RUD = this[RU D &&
(strmatch(".*lpr", this[PROG) = 1) & this[EUID = 0;

This guard is composed of six clauses each separated by a && operator. The full guard is only trueif each
of the clauses are individually true. If any clause evaluates to false, the value of the conjunction of these
clausesisfalse, so evaluation halts and the guard evaluates to false.

The first clause checks the ERR attribute of the event. Thisis a very common test, and can be seen
in just about every guard. If ERRis 0 the event occurred successfully, if it is 1 the event failed for some
reason. Soif wehadt hi s ERR] = 1inthe clause, we would be testing for failed EXECVE events. In
the clause, t hi s refers to the attributes of the current event.

The second clause extracts the Pl D attribute from the audit record, and binds it to the current token.
This now becomes a local variable available to al other guards in other transitions. Effectively, we have
tagged this token with the process id of the process that caused the token to enter the state machine.

Thethird clause does the same but for the name of the program which is stored in the PROG attribute of
the EXECVE event. Thisis the full pathname of the executable associate with this event. Again, we bind
thisto atoken color (i.e. alocal variableto the token) called PROG

Similarly, the fourth clause extracts the real user id of the process that caused with audit event and binds
it to thetoken color RUI D. Thiswill be used later in the post action to identify which user attempted to copy
over afile. Thisisacommon occurrence in patterns— someidentification information isextracted fromthe
events and bound to atoken color. Thisinformation is usually processid, user id or file name information.
This can be used to pinpoint who attempted an intrusion, and what they were using or trying to access.

These bindings are actually used in the second transition. The guard for the second transition looks as
follows:

I_{
this[ERR] = 0 & this[PID] = PID & FILE = this[OBJ] &&
(inTree(""/var/spool /", this[OBJ]) = 0);
}

The == operator isnot used in IDIOT. Instead, the = operator is used to unify the values on the left and
right of the operator.

Notice how the order of the terms around the = sign isreversed. We are now unifying in the opposite
direction. Each clause will evaluate to true if the value of the specified attribute from this audit event
matches the corresponding color for the token. IDIOT will match the Pl D attribute for this event with the
Pl Dcolor for every tokenintheaf t er | pr _exec state. This color was bound in the first transition.

39

This enables us to tie audit records together that belong to the same process. If another process called
thecr eat () system cal, there would be a CREAT event in the audit trail — but the PI Dfield would not

match the token’s PI D field. Only the process that first introduced the token into the state machine will
match the Pl Dfield.

We then bind the file name in the OBJ attribute of the event to the token color FI LE. Thisisused in the
post action to identify which file isthe target of the attack.

40

Chapter 5

Technical Details

5.1 How IDIOT works

As with most sizable projects, IDIOT consists of a fairly complex file structure. Determining how the
components of the program integrate and work together can be a challenging task. This sectionis presented
as an overview of the structure of IDIOT, discussing its major components and how they cooperate to form
an intrusion detection system.

IDIOT consists primarily of four components: the audit trail, showaudi t . pl, the C2_Server, and the
pattern descriptions. Of these four, both the audit trail and showaudi t . pl are machine dependent, while
the C2_Server and patterns are portable. A fifth component, C2_appl, provides an interactive user interface
to IDIOT; thisisaso portable.

511 Audit Trail

While technically quite separate from IDIOT, the audit trail is obviously an extremely important part of
thisintrusion detection system. Without an audit trail, there would be no record of activities against which
patterns could be matched, and this system would be rather useless. Currently IDIOT has only been used
with Solaris 2.4 and the Sun BSM audit trail. However, the system design should work equally well with
virtually any other OS and audit trail. Difficulties arise from the fact that, while most operating systems
provide some manner of audit trail, they each have a different format. This leads to portability problems.
IDIOT deals with this problem by working with a canonical form of the audit trail, rather than the raw audit
trail itself.

5.1.2 showaudit. pl

showaudi t . pl isIDIOT ssolutionto handling different audit trail formats. Thecurrentshowaudi t . pl

issimply a PERL script that converts a Sun BSM audit trail into the canonical format necessary for IDIOT.
If IDIOT is moved onto a new platform, only showaudi t . pl need be rewritten to accomodate the new
audit trail format. Similarly, if IDIOT were to be expanded on an existing system to examine more detailed

41

informationfromtheaudit trail, showaudi t . pl would need to be extended to includethe new information
in the canonical audit trail.

showaudi t . pl accepts either raw binary input files or ASCII files generated using the pr audi t
command. It can be run from the C2_appl interpreter (discussed later) to parse audit files, or it can be run
manually to view an audit trail in canonical form. By utilizing command-line options, the audit trail can be
printed either with or without symbolic names for events.

Asthe inner workings of showaudi t . pl are discussed in Section 5.3, we will not go into any more
detail here.

513 C2.Server

The C2_Server is the core of IDIOT. It is actually a C++ class, an instance of which is instantiated to
perform the intrusion detection. An object of type C2 Server has severa methods associated with it; the
most interesting of those are listed here:

int run_praudit(char *audit_file) — primary method, described below
C2_Pattern *parsefile(char *patternfil e) —parseanIDIOT patternfile

C2_Pattern *dllinkfile(char *file) — dynamicaly link a compiled pattern description
into the server object

Asshownabove, r un_pr audi t () simply takesthe name of the audit fileasinput. r un_pr audi t ()
callsshowaudi t . pl totransformtheaudittrail information into canonical form. Thenit goesinto aloop,
reading one audit event at atime from the transformed audit file. If run against a static audit trail, thisloop
continues until it reaches end-of-file. Otherwise, r un_pr audi t only exits upon encountering some kind
of failure.

For each event, r un_pr audi t () stepsthrough the list of patterns which are requesting events. For
each of these patterns, it executes the method Pat Pr oc(), passing the current event as a parameter.
Pat Proc() isamethod for each pattern, and thus knows the current state of matching for that pattern.
It takes the current event and performs the operations that should result from the occurrence of that event.
These include operations such as token unification and transition firing.

5.14 Patterns

Finally, of course, the patternsplay amajor rolein the workingsof IDIOT. Patterns are written in alanguage
that describes a known method of attack asa set of states and transitions between them. Asindicated above,
transitions are based on audit trail records, or events.

To be used by IDIOT, patterns must trandated into C++, compiled into shared objects, and linked
into the C2_Ser ver abject. Thiscan al be done at startup time, or patterns may be added to the server
dynamically.

Figure 5.1 depicts the basic component structure of IDIOT.

42

Figure 5.1: Structure of IDIOT

43

515 C2.appl

C2_appl providesan interactive interface into IDIOT. It allows the user to compile patterns, dynamically
link pattern objects and instantiate server objects, as well as several other related activities. Listed below
are some of the major commands available:

par se — parse a pattern file
dlink — dynamically link a compiled pattern into the server

server — perform operations on the server (set infile to binary or ascii, exercise patterns, change debug
level, or print the server queue)

debug — debug a pattern description
run —initiatesr un_pr audi t, described above

time — display time accumulated in C2_appl

5.2 Refering to external functions

External utility functions are used to compute results that cannot be expressed in IDIOT pattern form. For
example, the pattern | pd_del et e_f i | es checks to see if afile is being deleted outside of a specific
directory tree. A functioncalledi nTr ee will check to seeif agiven filenameis below a specified directory
point. It returns TRUE if thisis so.

How can this be incorporated into an IDIOT pattern? The following example shows how:

extern int inTree(str, str);
pattern | pd_delete_files "I pd deletes files not under spool dir" priority 7
state start, after_| pd_exec, after_delete;

str PROG FILE;

I_{
this[ERR] = 0 & this[PID] = PID & FILE = this[OBJ] &&
(inTree("/usr/spool”, FILE) = 0);

Thefunctioni nTr ee isdeclared external to the pattern. The declaration states that it takes two string
arguments, and returns an integer. When the function isused, we passtwo string arguments: / usr / spool
and the token attribute FI LE.

Theext er n keyword behaves similarly to C, but there are slight differences. The external declaration
isparsed by IDIOT to seeif it matches an internal type. If we examine the actual declaration fori nTr ee,
we seeit takes two strings as arguments, which isdeclared inuti l i ti es. Cas

int inTree(char *dir, char *file);

However, thiswill cause an error in IDIOT. Instead, the built in string typeisused: str. IDIOT will
parse thisand emit C++ code as follows:

extern int inTree(Str , Str);

This uses the inbuilt string class which is then translated into a RACSt r i ng.
The alowable parameter typesfor external declarations are as follows:

1. i nt Integer type— equivalentto Ci nt .
2. bool Booleantype— equivalenttoCi nt .

3. str String type— equivalentto C char *.

NOTE it isimportant that any external C function be used to compute data that will not change over
time! For example, if an external function was written which computed the number of users on the system,
an IDIOT pattern which was parsing an audit trail and called that function would probably get a different
result every timeit was run.

This problem occurs because IDIOT patterns get all their information about the system from the audit
trail. If an external function computesavalue that changes over time (such as number of processes, average
systemload, disk utilization) then the values being returned by the external function are not what they would
have been at the time the audit trail was generated. Instead, they will reflect the system state when the
pattern is run, which may be completely different from the state when the audit file was generated.

For example, see the pattern ot her _C2_patt erns/ dont-fol |l ow-sym | i nks This pattern
usesafunctioni sl i nk() to seewhether a specified fileis a symbolic link. However, the state of thefile
system may have changed between the time when the audit data was generated and the time the pattern is
run.

Inall the patterns provided with IDIOT, the utility functions perform computationsthat cannot be easily
done in a pattern specification. For example, a pattern can check to see if a file name existsin a specified
path component (thisis astring match — it does not check the state of thefile system). Or it can seeif afile
permission mask has the execute bit set (a simple bit-wise computation).

5.3 Audit trail canonicalization

A problem faced by any intrusion detection system is portability — every vendor and system has its own
unique audit trail format. Indeed, this format often changes across OS families from the same vendor
(SunOSvs. Solaris, for example). A well designed intrusion detection system should be able to accomadate
multiple audit trail formats with little modification.

5.3.1 Theroleof showaudi t. pl

IDIOT achieves this platform independence by spliting the intrusion detection engine into two parts: a
front end tool that reads a system-dependent audit trail and generates a platform independent intermediate
form and aback end that performs the pattern matching. Theshowaudi t . pl script isaPERL [WS92]
script that converts a Sun BSM audit trail [Sun] into a canonical audit format that IDIOT can handle. The
back end pattern matching engine will take this canonical form and run the patterns against it. If the IDIOT

45

system is ported to a new system with a different audit trail format, only theshowaudi t . pl script hasto
be rewritten. Similarly, if IDIOT is expanded on an existing system to monitor more detailed information
from the audit trail, the showaudi t . pl script has to be extended to include this new information in the
canonical audit trail.

Theshowaudi t . pl script can accept either raw binary input files or ASCII files generated using the
praudi t command. Typically, showaudi t isrunfromthe C2_appl interpreter to parse audit fileswhen
running IDIOT patterns. However, it can also be run manually to view an audit file in canonical form. The
script will run the pr audi t script to preprocess the audit trail. If the- r optionis given, the audit trail is
printed in raw format — no symbolic names for events are printed. Thepr audi t command runsfaster in
raw mode. By default, the script prints symbolic names for events.

i Asan example, theoutput whenthescriptisrunwiththeaudittrail forwr i t i ng-t o- execut abl e-fil es

execve Tue Feb 20 18:53:34 1996 ncrosbie ntrosbie ncrosbie ntrosbie -2
0 20085 failure: No such file or directory -1 + ARRAY(Oxfd564) O
execve Tue Feb 20 18:53:34 1996 ncrosbie ntrosbie ncrosbie ntrosbie -2
0 20085 failure: No such file or directory -1 + ARRAY(Oxfd594) 0O
execve Tue Feb 20 18:53:34 1996 ntrosbie ntrosbie ncrosbie ntrosbie -2
0 20085 success 0 + ARRAY(O0xfd534) 193080

open - read ntrosbie ntrosbie ntrosbie ntroshie -2 0 20085 success 4
+ ARRAY(Oxf d54c) 193085

exit Tue Feb 20 18:53:34 1996 ntrosbi e ntrosbie ntrosbhie ncroshie -2 0
20085 success 0

fork Tue Feb 20 18:53:41 1996 root root root root -2 0 10116 success 0

Ascan be seen, the script printsasymbolic name for events— for example, execve istheexecve()
system call used to overlay a process with an executable image. Parameters to the system call are displayed
after each event name. ldentification information for the user calling the command is also printed. In this
case, the user id, effective user id, group id and effective group id is printed. Thisisdescribed in more detail
in the Sun BSM audit trail documentation. In contrast, the raw output from showaudi t . pl - r looksas
follows (for the same audit trail):

23 824860414 727 727 727 727 -2 0 20085 2 -1 +

/. ector-2/pl9/ X11R6/ sun4- sos5/ exploit O

23 824860414 727 727 727 727 -2 0 20085 2 -1 +

/. ector-2/pl7/ hotjava- 1. 0a3/exploit 0

23 824860414 727 727 727 727 -2 0 20085 0 0 +

/' home/ ntr osbi e/ nyl DI OT/ audi t _dat a/ expl oi t 193080

80 824860414 727 727 727 727 -2 0 20085 0 4 +

/' home/ ntr osbi e/ nyl DI OT/ audi t _dat a/ execut abl e 727 0100711 193085
1 824860414 727 727 727 727 -2 0 20085 0 0 +

2 824860421 0 0 0 0 -2 0 10116 0 O +

The same information is encoded in the raw format as the ASCII format, but the symbolic names are
replaced by their corresponding integer codes from the audit trail. For example, the last line shows a user
and groupidlineof 0 0 O O which corresponds to the root user and group id.

5.3.2 Operation of showaudi t . pl
The script takes three command line arguments: - i controls what type of audit file format showaudi t

expects. -i asci i processesASCII audittrailsand-i bi nary processesbinary audittrails. - f makes
it follow the audit trail asit is generated.

46

The script starts by opening a pipe to a command to parse the raw, kernel generated audit file. Thisis
usualyat ai | -f of theoutputof pr audi t run on thecommand-line supplied audit filename. The audit
fileisthen parsed record by record by theshowaudi t script and each record is printed in canonical form
to stdout. When showaudi t isused from within C2_appl , thisoutput isredirected into the C2_Ser ver
to drive the IDIOT patterns.

An audit trail is composed of a series of records each of which is a sequence of tokens. Figure 5.2
shows atypical audit record layout. These tokens contain information such asthe timethe audit record was
generated, the event it represents and user | Ds associated with the audit event. Before the actual event token
is decoded, the surrounding header and informational tokens must be decoded. showaudi t processes
each type of token as described below, and then it generates output for the actual audit event in the audit
record.

Header Token

Arg Token

Data Token

Subject Token

Return Token

Figure 5.2: Layout of atypical audit record

The script must handle binary and ASCII input formats so the $opt _r flag is checked while parsing
audit record tokens. If theflag istrue, the numeric value associated with an event istested, of not, an ASCI|
string can be tested. For example, the file token gives the pathname to the next audit file. 1t's numeric event
number is17, and itsASCI| string representation is“file”. The code to determine whether the current record
isafilerecord looks asfollows:

if (($opt_r && $_[0] == 17) || (!'Sopt_r && $_[0] eq "file")) #file
trailer, (event 17) {
ny ($next_file_pat, $cnt, @iles, $next_audit_file, $dirnane);
if(@ <4 || $_[3] !'" /.*(1995\d+)\..*/) {
print "No of dropped events = $dropped_events", "\n";
exit O;

}
showaudi t handlesthe following types of audit tokens:

File token — afile token indicates that the current audit trail has ended and it points to where the next
audit file can be found. showaudi t will parse thistoken and extract the file name for the new audit
file and make three attemptsto open the new audit file. If it cannot open it after 3 attempts, it givesup
and exits. Furthermore, a file token must mark the start of a new audit file — if showaudi t does
not find afile token, it complains that the audit file isinvalid and gives up.

47

Header token — a header token marks the begining of an audit record. A corresponding trailer token
marks the end of the audit record. The header token encodes the length of the audit record, the event
type the record encodes and a timestamp for when the audit record was generated. showaudi t
extracts the type of the audit event and the timestamp from the header token. It then starts to parse
the remaining tokens in the audit record.

Path token — apath token contains access path information for an object (typically afile). The pathname
isencoded asalength field and an arbitrary length character string. showaudi t storesthe pathname
component. There can be multiple path tokensif alink is being followed.

Attribute token — an attribute token contains information from the file's i-node entry. Thisincludesthe
user and group id of the file's owner, the file system the file resides on, the inode for the file and the
deviceid for thefile system device. showaudi t extracts thisinformation.

Argument token — an argument token contains system call argument information. showaudi t extracts
the argument values. Note, there can be multiple argument tokens — one for each argument to a
system call.

Subject token — asubject token describes asubject (i.e. aprocess). Thefields of interest toshowaudi t
are the real and effective user and group id's, the process id of the process that generated the audit
event, and an audit sessionid.

Socket token — thisrecords information about a an Internet socket. showaudi t extractsthe type, local
port and address and remote port and address information from the token.

Return token — this stores the return value of a system call and the returned error code for the system
cal (theer r no valuein UNIX). showaudi t extracts both these fields.

Text token — this contains an artibrary text string which is extracted.

Once the header and informational tokens have been processed, showaudi t has enough information
to start generating a canonical form for the audit record. It callsthepri nt _.C2_r ecor d routine to print
out the audit record in canonical form. This routine does not handle every audit event — a variable
dr opped_event s records how many events were ignored from the audit trail. For each audit event type,
itcalspri nt _base_C2_r ecor d to print the basic information about the audit record. Thisroutine prints
the user and group id’s, audit session id, processid and the return value and error number from the system
call.

Thenthepri nt _C2_r ecor d printsinformation about certain audit events. This uses the information
stored while parsing the tokens. For example, the code to print achnmod() event looks as follows:

C2_10:
print_base_C2_record();
#chnod has 3 args, path, inode & the newnrods on the file, in type Ox....
$arg{"path"} = ["<>"] if ! exists $arg{"path"};
print " ", $arg{"path"}[0];
if (exists $arg{"obj"})
{ print " ", Sarg{"obj"}{"inode"}; }
el se
{ print " 0"; }
print " ", $arg{"args"}[0];
print "\n"; return;

48

The C2_10 isthe branch of the case statement that handles this audit record type. The path and inode
information was stored earlier in the associative array ar g when the tokenswere being parsed. Thesefields
are now accessed and printed out, separated by spaces.

5.4 Adding new audit eventsto IDIOT

IDIOT does not handle all audit events in the Sun BSM trail. It is possible to enhance IDIOT to extract
information about audit events and provide extra information to patterns. Before attempting to modify
IDIOT to add new events you should read al the documentation shipped with IDIOT and (for Solaris
machines) the Audit Record Description section of the BSM answerbook.

There are three components of the IDIOT system that must be modified to handle a new audit record. 1)
Theshowaudi t . pl script must parse the audit trail and extract the relevant information out of the audit
record tokens; 2) The C2_Ser ver module must know how to interpret the data and generate the correct
class; 3) The C2_Ser ver : : par se method defined in pat . y must add the event names to the parsing
symbol table.

To add a new event (or add attributes to an existing event) edit the showaudi t . pl file and remove
the event you are going to add from the dropped eventslist (if it'sthere) and add the event to the appropriate
group. Events are grouped together according to the information they print. All events print the base
record. Groups of events print additional information. The event number can be extracted from the
/etc/security/ audit_event file. For example, thel i nk systemcall isevent number 5. The entry
intheaudi t _event fileforl i nk is:

5:AUE_LINK: link(2):fc

Then edit the C2_event s. h file and add the code for your event (or the attribute you added). Asin
showaudi t . pl, events are grouped into classes of similar events. A GENERIC event in thisfile isonly
a class definition that encompasses many events. For example, the class “C2Event _GENERI C_EXEC’
represents all execute events that have the same format. The individual instances are defined by the lines:

typedef C2Event GENERI C_EXEC C2Event _EXEC;
typedef C2Event GENERI C_EXEC C2Event _EXECVE;

Similarly, the class “C2Event _.GENERI C' represents al the audit events that share the same format
but are not alogical group (similar to execs). From the declaration:

typedef C2Event GENERI C C2Event _CLCSE;
typedef C2Event GENERI C C2Event _ACCESS;
typedef C2Event GENERI C C2Event _CHDI R;
typedef C2Event GENERI C C2Event _FORK;
typedef C2Event GENERI C C2Event _LSTAT;
typedef C2Event GENERI C C2Event _STAT;
typedef C2Event _GENERI C C2Event _UNLI NK;
typedef C2Event _GENERI C C2Event _VFORK;

we gather that the events CLOSE, ACCESS, CHDIR, FORK, LSTAT, STAT, UNLINK, and VFORK
have been grouped together by the showaudi t . pl.

Finaly, edit the pat . y file and search for theC2_Ser ver : : par se method. It should resemble:

49

int C2_Server::parse(char *pat)
{

static int pushed_event_decls = 0;
i f(!pushed_event _decls)
server_evNanme2Type = C2_evNane2Type;

szAppl nane = "C2";
synt ab. pushl evel ();

synt ab. push(new sym tab_entry("ACCESS", -1, syntyp_event, symattr_none, NULL)) ;
synt ab. push(new sym tab_entry(" CHVOD", -1, syntyp_event, symattr_none, NULL)) ;
/* Lots of lines deleted..... */
synt ab. push(new sym tab_entry(" SYM.I NK", -1, synmtyp_event, symattr_none, NULL)) ;
synt ab. push(new sym tab_entry("VFORK", -1, synmtyp_event, symattr_none, NULL)) ;
pushed_event _decls = 1;

}

/* Sone nore code del eted */

Add another line to this routine to push the name of the event you are defining.

54.1 Events Supportedin Shipped Version

Thefollowing tables have alist of the eventsthat can be used in IDIOT patterns with the system as shipped.

Events: EXEC, EXECVE

Attributes: TIME (time_t), RUID (uid_t), EUID (uid-t), RGID (uid_t),
EGID (uid-t), AUID (uid-t), SID (uid-t), PID (int),

ERR (int), RETVAL (int), PROG (const char *), PROG_INODE (int),
OBJ.MODS (int)

Description: | TIME: Time the event took place

RUID: Redl user ID

EUID: Effective user ID

RGID: Real group ID

EGID: Effective group ID

AUID: User audit ID

SID: Session ID

PID: Process ID

ERR: Return status of system call

RETVAL: Process return value

PROG: Name of program executed

PROG_INODE: Program inode number

OBJ_MODS: Permissions of program executed

50

Events. LINK

, SYMLINK

Attributes:

Description:

TIME (time.t), RUID (uid_t), EUID (uid_t), RGID (uid-t),
EGID (uid-t), AUID (uid-t), SID (uid.t), PID (int),
ERR (int), RETVAL (int), OLDPATH (const char *),
NEWPATH (const char *)

TIME: Time the event took place

RUID: Redl user ID

EUID: Effective user ID

RGID: Real group ID

EGID: Effective group ID

AUID: User audit ID

SID: Session ID

PID: Process ID

ERR: Return status of system call

RETVAL: Process return value

OLDPATH: Pathname of the object linking to
NEWPATH: Pathname of new object

Events:. MKN

oD

Attributes:

Description:

TIME (time.t), RUID (uid_t), EUID (uid_t), RGID (uid-t),
EGID (uid-t), AUID (uid-t), SID (uid.t), PID (int),

ERR (int), RETVAL (int), OBJ(const char *), DEV_MODE (int)
TIME: Time the event took place

RUID: Redl user ID

EUID: Effective user ID

RGID: Real group ID

EGID: Effective group ID

AUID: User audit ID

SID: Session ID

PID: Process ID

ERR: Return status of system call

RETVAL: Process return value

OBJ: Name of special file

DEV_MODE: Permissions of the special file

Events. LOGI

N, SU, EXIT

Attributes:

Description:

TIME (time.t), RUID (uid_t), EUID (uid_t), RGID (uid-t),
EGID (uid-t), AUID (uid-t), SID (uid.t), PID (int),
ERR (int), RETVAL (int)

TIME: Time the event took place

RUID: Real user ID

EUID: Effective user ID

RGID: Real group ID

EGID: Effective group ID

AUID: User audit ID

SID: Session ID

PID: Process ID

ERR: Return status of system call

RETVAL: Process return value

51

Events: OPEN_R, OPEN_RC, OPEN_RT, OPEN_RTC, OPEN_RW,
OPEN_RWC, OPEN_RWT, OPEN_RWTC, OPEN_W, OPEN_WC,
OPEN_WT, OPEN.WTC

Attributes:

Description:

TIME (time.t), RUID (uid-t), EUID (uid_t), RGID (uid-t),
EGID (uid-t), AUID (uid-t), SID (uid.t), PID (int),

ERR (int), RETVAL (int), OBJ (const char *), OBJ.INODE (int),
OBJ_MODS (int), OBJ.OWNER (int)

TIME: Time the event took place

RUID: Real user ID

EUID: Effective user ID

RGID: Real group ID

EGID: Effective group ID

AUID: User audit ID

SID: Session ID

PID: Process ID

ERR: Return status of system call

RETVAL: Process return value

OBJ: Name of file being opened

OBJ_INODE: Inode number of file opened

OBJ_MODS: Permissions on file opened

OBJ.OWNER: User ID of file owner

Events: ACCESS, CHDIR, CLOSE, FORK, LSTAT, STAT,
UNLINK, VFORK

Attributes:

Description:

TIME (time.t), RUID (uid_t), EUID (uid_t), RGID (uid-t),
EGID (uid-t), AUID (uid-t), SID (uid.t), PID (int),

ERR (int), RETVAL (int), OBJ (const char *), OBJ.INODE (int)
TIME: Time the event took place

RUID: Redl user ID

EUID: Effective user ID

RGID: Real group ID

EGID: Effective group ID

AUID: User audit ID

SID: Session ID

PID: Process ID

ERR: Return status of system call

RETVAL: Process return value

OBJ: Name of file being opened

OBJ_INODE: Inode number of file opened

OBJ_MODS: Permissions on file opened

OBJ.OWNER: User ID of file owner

OBJ: Name of object

OBJ_INODE: Inode of object

52

Events. CREAT

Attributes:

Description:

TIME (time.t), RUID (uid_t), EUID (uid_t), RGID (uid-t),
EGID (uid-t), AUID (uid-t), SID (uid.t), PID (int),
ERR (int), RETVAL (int), OBJ (const char *), OBJ.INODE (int),
OBJ.MODS (int)

TIME: Time the event took place

RUID: Real user ID

EUID: Effective user ID

RGID: Real group ID

EGID: Effective group ID

AUID: User audit ID

SID: Session ID

PID: Process ID

ERR: Return status of system call

RETVAL: Process return value

OBJ: Name of file being opened

OBJ_INODE: Inode number of file opened
OBJ_MODS: Permissions on file opened
OBJ.OWNER: User ID of file owner

OBJ: Name of file created

OBJ_INODE: Inode of file created

OBJ_MODS: Permissions of file created

Events: CHMOD

Attributes:

Description:

TIME (time.t), RUID (uid_t), EUID (uid_t), RGID (uid-t),
EGID (uid-t), AUID (uid-t), SID (uid.t), PID (int),

ERR (int), RETVAL (int), OBJ (const char *), OBJINODE (int),
NEW_MODS (int)

TIME: Time the event took place

RUID: Redl user ID

EUID: Effective user ID

RGID: Real group ID

EGID: Effective group ID

AUID: User audit ID

SID: Session ID

PID: Process ID

ERR: Return status of system call

RETVAL: Process return value

OBJ: Name of file being opened

OBJ_INODE: Inode number of file opened

OBJ_MODS: Permissions on file opened

OBJ.OWNER: User ID of file owner

OBJ: Name of file for which the permissions are being changed
OBJ_INODE: Inode of file being changed

NEW_MODS: New permissionsfor file

53

Events: CHOWN

Attributes: TIME (time.t), RUID (uid_t), EUID (uid-t), RGID (uid_t),
EGID (uid-t), AUID (uid-t), SID (uid.t), PID (int),

ERR (int), RETVAL (int), OBJ (const char *), OBJ.INODE (int),
OBJ.NEWUID (int), OBJ.NEWGID (int)

Description: | TIME: Time the event took place

RUID: Redl user ID

EUID: Effective user ID

RGID: Real group ID

EGID: Effective group ID

AUID: User audit ID

SID: Session ID

PID: Process ID

ERR: Return status of system call

RETVAL: Process return value

OBJ: Name of file being opened

OBJ_INODE: Inode number of file opened

OBJ_MODS: Permissions on file opened

OBJ.OWNER: User ID of file owner

OBJ: Name of file for which the ownership is being changed
OBJ_INODE: Inode of file being changed
OBJ.NEWUID: New user id for file

OBJ.NEWGID: New groupid for file

55 A samplelIDIOT program

j 1 g. Cwaswritten asan example of how to run IDIOT non-interactively. It instantiatesa C2_Server object,
sets the desired debug level, loads the specified patterns, and attempts to match all patterns against the
specified audit trail.

Following is the usage summary forj i g. C

Usage: jig [options] <auditfile> <patternfile>+\n
Opti ons:
-dn -- Set debug level to n (defaults to O if option not given)
-1 -- Link in preconpiled patterns (patterns parsed by defaul t)
- Pattern files on conmand |ine should be *.so versions

As can be seen, the current defaults are to generate no debugging information and to parse all patterns.
For most cases, it would likely be preferable to havej i g. Clink precompiled patterns by default. This
would be a minor change within the code.

It should be noted that j i g. C was written as an example program and assumes some degree of
experience on the part of the user. No error-checking is performed on the command-line arguments; they
are assumed to be accurate and compl ete.

5.6 Debugging

The origina debugging options for IDIOT were quite simple: debugging was either on or off, and the
only debugging information that could be automatically generated came from the server. Pattern debugging

54

information had to be manually inserted into the pattern itself. We decided that more flexibility would be
helpful. There are now three levels of debugging:

Level 1 — Only generate server debugging information
Level 2 — Only generate pattern debugging information

Level 3— Generate both pattern and server information

We also decided that the ability to separate the pattern debugging information from the server debugging
information would be quite useful. A PERL script, vi ew.debug. pl, was developed for this purpose; it
is also described below.

5.6.1 Debuggingthe server

Debugging within the C2_Server isfairly basic. If the debug level is appropriately set, the server generates
information about each audit event it processes. This information includes the type of event, time of
occurrence, RUID, EUID, PID, return value, and various event-dependent information, such as program
name. Thisinformation is now only generated when the debug level isset at 1 or 3. Also, each line of
debug output has been prepended with a %S to distinguish it from pattern debugging information.

5.6.2 Debugging patterns

This section describes how to debug patterns written in the IDIOT pattern language. As the language is
especially tailored to specifying pattern transitions, it is difficult to use regular tools such as gdb to debug
patterns. To aid debugging, we have provided some rudimentary output routines. The main utility routine
we have provided ist r ue_pri nt (), which takes a string as a parameter, prints the string to STDOUT,
and returns TRUE.

As mentioned above, debugging information for patterns originaly had to be generated manually.
We decided that having some debugging information generated automatically could be useful, if it were
governed by the debug level. To achieve this goal, we modified pat . y to insert the following code into
every pattern asit is parsed and trandlated to C++:

int dbug;
extern int true_print(Str);

dbug = S->debug; // executed within pattern constructor

if (dbug > 1)
true_print(‘‘<pattern name> -- <transition nane> transition fired ');

We decided to only insert callstot r ue_pri nt () at the completion of each transition to alow the user to
maintain afine grain of control over debugging output.

If more debugging information is desired, there are a couple of options. Note that IDIOT uses short-
circuit evaluation of guards, so if any one of the conjunctive clauses is false, then evaluation of the whole
clause stops and the transition is not taken. Thus, if atrue_pri nt () call is placed within a clause, al
the preceding clauses must be true before the print will occur. t r ue_pri nt () itself returns TRUE, which
istheidentity element for logical-and and has no effect on the evaluation.

55

For example, if wewereinterested only inthe occurrance of an OPEN_W event (fromthewr i t i ng-t 0- execut abl e-
pattern), whether or not it was successful, we could do:

trans nod8(OPEN W
<- after_exec;
-> violation;
| _ { true_print("Matched OPEN Wevent...") & / event occurred */
this[ERR] = 0 & /* if this operation succeeded */
PID = this[PID] & /* and this PID matches that of the exec */
FILE = this[OBJ] && /* remenber this filename */
i sexec(this[OBJ_MIDS]); /* if this file is executable */
end nod8;

Note that this call to t rue_pri nt () would always be executed, regardless of the debug level. If the
statement should be conditional upon the debug level, it could be inserted as follows:

trans nod8(OPEN W
<- after_exec;
-> violation;
| _{ ((dbug > 1) ? true_print("Matched OPEN Wevent...") : 1) & /* event occurred */
this[ERR] = 0 & /* if this operation succeeded */
PID = this[PID] & /* and this PID matches that of the exec */
FILE = this[OBJ] && /* renmenber this filename */
i sexec(this[OBJ_MXDS]);
end nod8;

Aswithanordinary call tot r ue_pri nt (), thiswouldleave thevaueof theguard unchanged. In addition,
the debugging information would only be generated if the debug level was set appropriately (> 1).

One item to note is that each string passed to t r ue_pri nt () is prepended with %P before being
printed, distinguishingit from the server debugging information.

5.7 Interactive debugging

TheC2_app! program can be used to run IDIOT interactively. Thiscan sometimesbe useful for debugging
purposes. The debug level isinitialized to 0. To change the debug level, issue the following command:

server debug <debug | evel >
The specified debug level will cause the appropriate debugging information to be printed to STDOUT.

We mentioned above that each pattern’s dbug variable is initialized only once, within the pattern
constructor. Thus, thedbug variable retains the value of the server debug level at the time the pattern was
instantiated. Thisallows the user to dictate which patterns generate debugging information.

For example, if you only wished to debug the executi ng-parti cul ar - pgns pattern while
matching several, you would do the following:

> ./ C2_appl /lstart C2_appl, debug_level set to 0O
tini> dlink <patternl.so>
tini> dlink <pattern2.so>

//link in N patterns w thout debug info

tini> dlink <patternN so>
tini> server debug 2

tini> dlink ex_prt_pgms. so
tini>run <audit trail>

All of the included patterns would be utilized, but only the execut i ng- parti cul ar - pgns pattern
would generate debugging information.

56

5.8 Viewing debug information

As an aid in viewing and understanding debugging information, we developed vi ew debug. pl. This
PERL script separates pattern debugging information from server debugging information. Furthermore, it
allows both sets of output to be viewed simultaneously with the debugging statements synchronized.

Torunitsmply type. / vi ewedebug. pl, followed by the command line you wish to have passed to
j1g.viewdebug. pl will execute. /j i g with the specified command line and separate the debugging
output into the files pat _debug. out (pattern debug information) and C2_debug. out (server debug
information). (NOTE: vi ew.debug. pl currently assumesitisinthesamedirectory asj i g.) Theoutput
is separated according to the presence of the %P at the beginning of pattern debugging output and the %S
preceding server debugging output. For each line of output the following occurs:

— if preceded by %P, the line is numbered and written to pat_debug.out, minus the %P, and a blank line
(numbered identically) is written to C2_debug.out

— if preceded by %S, the line is numbered and written to C2_debug.out, minus the %S, and a blank line
(numbered identically) is written to pat_debug.out

— all other lines are simply printed to STDOUT, without affecting the numbering

After vi ew.debug. pl hasfinished, pat _debug. out and C2_debug. out may be viewed side by
side, alowing the user to see exactly what sequence of events is causing each transition to fire. The line
numbers alow easy synchronization while viewing the files.

NOTE: While vi ew.debug. pl will not currently work with the C2_appl interface, this could be
changed with a fairly simple alteration of the PERL code.

57

Chapter 6

Limitationsof C2 Audit Trails

6.1 Auditing socket callson System V (Solaris)

In SunOs, the abstraction of socketsisbuiltinto thekernel. Callssuchassocket, connect and accept
must cross the system call boundary, and will generate audit records.

However, in System V, the communication abstraction isstreams. A stream is a data flow path between
two endpoint entities. Streams are a generic abstraction for data flow — they are used toimplement terminal
drivers, sockets and FIFOs in System V versions of UNIX. In particular, the abstraction of sockets is
provided by alibrary built on top of the kernel. Socket calls in this library execute a series of get nsg,
put msg andi oct | callsto interface with System V streams. No audit data is generated that specifically
mentionsthat a socket call has occured. The audit data only showsthe System V stream interface calls.

Thismakesit difficult to write patterns to detect such simple network based attacks as port-flooding and
port-walking. A port-flood iswhere an abnormally high number of connectionsare received on asingle port.
The ideaisto use up kernel socket resources and denying network access to any other users. A port-walk
isaseries of connectionsto portswhich attemptsto find services running on ports which may be exploited.

Both of these attacks could be detected from an audit trail which contained records for connect and
accept events. To simulate this, awrapper library for the socket library must be written. This wrapper
library will generate an audit record to be placed in the audit file, and will then call the original socket library
call.

An example below shows how thisis done:

#i ncl ude <sys/types. h>
#i ncl ude <sys/socket.h>
#incl ude <bsnilibbsm h>

/* the _connect routine is the systemcall */
extern int _connect(int s, struct sockaddr *nane, int nanelen);

/* write our own connect routine that will generate an audit record */
int connect(int s, struct sockaddr *nane, int nanelen) {

struct socket sock;
int token;
token_t *m

token = au_open(); /* allocate an audit token to write info to */

/* generate a socket token that records the information */

58

m = au_t o_socket (sock);
/* write that socket token to the audit trail */

return(_socket (donai n, type, protocol);

6.2 Auditing operations on symbolic linkson System V (Solaris)

Many of the patterns devised at the COAST lab needed information about system calls that were operating
on symbolic links. The pattern that detects the exploitation of the xt er mbug, for example, can detect
exploitations by seeing if the inode for the log file has changed between the creation and accessing of the
file.

Unfortunately, this pattern cannot be used as iswith the Basic Security Module C2 logging provided by
Sun with Solaris 2.4. For this pattern to work, the audit trail would need to provide, at least, the following
information:

. execve: ERROR, EUID, RUID, PID, and program name
. creat: ERROR, PID, initia file name, final file name, and inode number
. open: ERROR, PID, initia file name, final filename, and inode number

. ¢l ose: ERROR, PID, inode, initial file name, and final file name

. chnpd: ERROR, PID, inode, initial file name, and final file name

1

2

3

4

5. chown: ERROR, PID, inode, initial file name, and final file name
6

7. access: ERROR, PID, inode, initial file name, and final file name
8

. st at: ERROR, PID, inode, initia file name, and final file name

Theonly itemsthat require explanation are thefile names. If wehaveasymboliclink sy il that pointsto
afilefil 1thenacall tochnod("syml", node) would require an audit trail record that would indicate
that the chnod system call was executed on theinitial file name syl and the final file namefi| 1. The
inode should be the one corresponding to the final name.

The audit trail generated by the Basic Security Module provided with Solaris 2.4 violatesthe file names
requirement. To see why thisis important, consider the following fragment of a setuid C program called
xt er nbug:

/* Create a log file called xternbug.log */
if(creat("xternbug.log",0) > -1) {
/* The permi sions of the created file were set to 0x00000. Change them
to sonet hing nore reasonable */
if(chnod("xternbug.log",S IRWKU S_IRWKG S IRWKO) == -1) {
fprintf(stderr, "Could not change the permission of file
xt er mbug. | og\ n");
}
} else {
fprintf(stderr, "Could not create log file xternbug.log\n");
}

59

and an attack script that will exploitthevulnerability describedinthisdocumentiscalled xt er mbug. expl oi t:

#!'/ bin/ sh

nknod xternbug.log p

xternbug &

sleep 1

nv xt ernbug. | og junk

In -s /homes/ krsul / break_me xternbug. | og
cat junk

cat /hones/ krsul /break_ne

This attack can not be detected by the pattern described in this document if using the Basic Security
Moduleloggingin Solaris2.4. The audit trail generated for this session, reformatted for clarity and brevity,
with the attacker called gollum, and the victim called kr sul , is:

1 execve(2) - path,/honme/gollunt xternbug. exploit - EU D gollum- RU D
gol lum
2 execve(2) - path,/usr/sbin/nmknod - EU D gollum- RU D gollum
3 nknod(2) - argunent, 2, 0x11b6, node - argunent, 3, 0x0, dev
4 pat h, /. nordor/ hone/ gol | um xternbug.l og - EU D gollum- RU D
gollu
m
5 chown(2) - argunent, 2,0x341,new file uid - argunent, 3, 0x341, new file
gid
6 pat h, /. nordor/ hone/ gol | unm xternbug.l og - EU D gollum- RU D
gollu
m
7 execve(2) - path,/honmes/krsul/bin/xternbug - EU D krsul - RU D gol | um
8 execve(2) - path,/usr/bin/sleep - EUD gollum- RUD gollum
9 execve(2) - path,/usr/local/bin/m/ - EUD gollum- RU D gollum
10 renanme(2) - path,/.nordor/hone/ gol | uni xt er nbug. | og
11 pat h, /. nordor/ hone/ gol | um junk - EUI D gollum- RU D gol |l um
12 execve(2) - path,/usr/bin/In - EUD gollum- RUD gollum
13 synlink(2) - text,/hones/krsul/break_ne - path,/.nordor/hone/gollunm xte
r nbug
.1 og
14 EU D gol lum- RU D gol | um
15 execve(2) - path,/usr/bin/cat - EUD gollum- RUD gollum
16 creat(2) - path,/.nordor/hone/gol | uni xternbug.log -
argunent, 3, 0x2, stropen:

flag

17 EU D krsul - RU D gollum

18 chnod(2) - argunent, 2,0x1ff,new file node - path,/hones/krsul/break_ne
19 EU D krsul - RU D gollum

20 execve(2) - path,/usr/bin/cat - EU D gollum- RU D gollum

Notice that in line 20, the audit trail indicates that the chnmod(2) system call was made to the file
/homes/krsul/break_me. While this is ultimately true, it does little to help detect the exploitation of the
vulnerability. The pattern design specifically looks for achnod or chown to the same file name as the
cr eat but with different inode numbers. The audit trail should mention that the original call was made to
filext er mbug. | og.

6.3 Writeeventsarenot audited

Some patterns need to detect WRI TE events. However, in the Solaris BSM audit trail the write events are
subsumed under the OPEN event. So the audit trail for awrite looks as follows (output of pr audi t):
header, 136, 2, open(2) - read,wite,, Tue Feb 20 18:53:34 1996, + 846005000 nsec

pat h, / hore/ ntr osbi e/ nyl DI OT/ audi t _dat a/ execut abl e

attribute, 100711, ncrosbi e, ncrosbi e, 8388638, 193085, 0

subj ect, -2, ncroshi e, ncrosbi e, ntrosbi e, ntrosbi e, 20085,0,0 0 0.0.0.0
return, success, 4

The audit trail was gathered with thef waudit mask flag. This gathers data about file writes. Theopen
cal isrecorded, butthewr i t e call isnot. The aboveaudit trail correspondsto the following code fragment:

60

if((fd=open("./executable", O RDWR)) < 0) {
perror(" open: ");
exit(1);

}

printf("Exploit: witing to executable...\n");
if(wite(fd, "abcdef", 6) < 6) {

perror(" wite: ");

exit(1);
}

Thus, we are forced to detect writes to executable files by detecting the opening of the file, and not the
actual write.

61

Chapter 7

Source Code

62

Bibliography

[ES96a] Todd Ellisand Eugene Spafford. Debugging idiot. Technical report, April 1996.
[ES96b] Todd Ellis and Eugene Spafford. Working with idiot. Technical report, April 1996.

[KS94] Sandeep Kumar and Eugene Spafford. An application of pattern matching in intrusion detection.
Technical report, Purdue University, 1994.

[KS95] Sandeep Kumar and Eugene Spafford. A taxonomy of common computer security vulnerabilities
based on their method of detection. Technical report, Purdue University, 1995.

[Kum95] Sandeep Kumar. Classification and Detection of Computer Intrusions. PhD thesis, Purdue
University, August 1995.

[Set89] Ravi Sethi. Programming Languages, Concepts and Constructs. Addison-Wesley, 1989.
[Sun] Sun Microsystems. SUnSHIELD Basic Security Module Guide.
[WS92] Larry Wall and Randal Schwartz. Programming PERL. O’ Reilly and Associates, 1992.

63

